学年

質問の種類

物理 高校生

物理の正弦波の問題です。 黄色のマーカー引いたところの導き方を教えてください!🙏

発展例題 30 正弦波の式 物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s であった。 実線の状態を時刻 t=0s とする。 -1 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 -2 V (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y [m] を, 時刻 t[s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sin を用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 図から, 波長 入=16mなので, 周期Tは, T=^_16 V 20 おり, 速さは, ひ= = 0.80s =20m/s 振動数fは. T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2ヶ異なり、 t=0の とき, x=0の媒質の変位はy=0 なので,位置 = -=1.25 1.3Hz ↑y〔m〕 2 1 10 ■発展問題 356 進む向き A 20 x[m〕 TEORIA x での位相 (sin の角度部分)は、2= TX 8 と表される。また, x = 0 から x>0 に向かって まず波の山ができており, 波の振幅が 2.0m な TX ので,求める波形の式は、 y=2.0sin- VARO 8 (3) 媒質の振動では1周期 (T= 0.80s) 経過する と位相が2ヶ進み, x=0 の媒質の変位は,図か ら, t=0のときに y = 0 なので、 時刻 t におけ る位相 (sin の角度部分) は, 2πー MER 表される。また, x=0の媒質は、 t=0 から微 小時間後に負の向きに動くので 求める 変位y の式は, y=-2.0sin2.5tt = 2.5t と 20.80 490

回答募集中 回答数: 0
物理 高校生

オのところで-k(x-x1)が成り立つ時単振動の中心がx1であるのかを教えてほしいです

" 85 ゴムひもによる小球の運動■ 次の文中の を埋めよ。 図のように、屋根の端に質量の無視できるゴムひもで小球をつな いだ。 小球を屋根の位置まで持ち上げてから 落下させたときの運 動を考える。 ゴムひもの自然の長さはL, 小球の質量はmである。 図のように鉛直方向下向きにx軸をとり, 屋根の位置を原点とする。 使用するゴムひもは, 小球の位置xが x≦L のとき, ゆるんだ状態 となり小球に力を及ぼさない。 一方, x > L のとき, ゴムひもは伸 びて張力がはたらき ばね定数kのばねとみなせる。 小球は鉛直方向にのみ運動し, 地 面への衝突はないものとする。重力加速度の大きさをgとする。 小球を屋根の位置(x=0) から静かにはなして落下させた。 x=Lの位置での小球の 速さはアである。 小球にはたらく張力の大きさが重力の大きさと等しい瞬間の位 置を x1 とすると, x1=イである。x=xでの小球の速さは,v=ウであ る。さらに小球は下降し、 最下点に到達した後, 上昇した。 最下点の位置をxとすると X2=エである。 また, 最初に x1 を小球が通過してから最下点を経て、再び x にも [18 明治大] 77,78 である 日 屋根 + -0 x

回答募集中 回答数: 0
物理 高校生

⑶についてです。黒く書いたように6m延長させるのはなぜ間違ってるのですか?なぜ上下逆転するのですか?

170 W章 波動 基本例題44 横波の伝わり方 図は,x軸上に張られたひもの1点Oがy[m〕 単振動を始めて, 0.40s 後の波形である。 0.20 (1) 振幅, 波長, 振動数, 波の速さはそれ ぞれいくらか。 (2) 図の0,a,b,cの媒質の速度の向 きはどちらか。 速さが0の場合は 「速さ」と答えよ。 両 (3) 図の時刻から. 0.20s後の波形を図中に示せ。 指針 (1) 周期は、波が1波長の距離を 進む時間から 0.40s である。 振幅, 波長をグラ フから読み取り, 振動数, 波の速さを求める。 6 (2) 横波では, 媒質の振動方向は波の進む向き に垂直であり、媒質はy方向に振動している。 (3) 波は1周期の間に1波長の距離を進む。 解説 (1) グラフから読み取る。 振幅 : A = 0.20m, 波長 : 入=4.0m 振動数, 波の速さは, 振動数:= 1/72= 波の速さ : v=fd = 2.5×4.0=10m/s (2) aとcは振動の端なので速さが0である。 Oとbの向きは,微小時間後の波形を描いて調 べる。 0: 上,b:下,aとc: 速さ 0 ST 1 0.40 =2.5 Hz I 08.0 0 JA 20 -0.20 a y[m〕↑ 0.20 0 y[m] 0.20 C HA wazlo -0.20 基本問題 334, 335,336 Say 6 7 FAX 3 微小時間後 I 52 8 HOTO 4 5 6 7 8 x[m] 133-0.20 a (3) 周期が 0.40sなので, 0.20s 間で波は図の状 R 態から半波長分を進む。 x (m) I に ** XX I I 6 7 8 x〔m〕 0 [Point 媒質の速度の向きを調べるには, 微 小時間後の波形を描くとよい。 SHU

回答募集中 回答数: 0
物理 高校生

(3)の問題、公式に代入したところーをつけ忘れていました なぜ公式に代入するだけだと行けないのですか?

波が生 =2.0mである。 波の速さ 発展例題30 正弦波の式 物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s であった。 実線の状態を時刻t=0s とする。 (1) 波の伝わる速さ、周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y [m] を,時刻[s] を用いて表せ。 正弦波の波形や、 単振動をする媒質 ti st の変位は,いずれも sinを用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで おり, 速さでは, =20m/s 図から, 波長=16m なので, 周期Tは, 4_16 20 I="0" v= = -=0.80 s 2.0 0.10 振動数fは, f= T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2ヶ異なり, t=0の とき, x=0の媒質の変位は y=0 なので, 位置 =1.25 1.3Hz 2 1 Ly〔m〕 -2 進む向き I I F V 10 20 x〔m〕 TX 16 8 TCX y=2.0sin 8 x での位相 (sin の角度部分)は、2012/15=1 と表される。また, x=0からx>0 に向かって まず波の山ができており, 波の振幅が2.0m な ので 求める波形の式は, (3) 媒質の振動では1周期 (T= 0.80s) 経過する と位相が2進み, x=0の媒質の変位は,図か ら, t=0のときにy = 0 なので, 時刻 t におけ t る位相(sin の角度部分) は, 2π =2.5t と 0.80 表される。また, x=0の媒質は, t = 0 から微 小時間後に負の向きに動くので、求める変位y の式は, y=-2.0sin2.5t

未解決 回答数: 1