学年

質問の種類

数学 高校生

この問題(例題のほう)で階差数列を使って解いている理由が分かりません。 この問題において、 n≧2のとき、an+1=2an n=1の時もa0は1個に平面を分けていると考えれば、成り立つので n=1のときも成り立つということで 等比数列の漸化式として解いてはいけないのですか?

よ。 0.30 日本 例題 35 図形と漸化式 (1) 403 00000 「上の円は同一の点では交わらない。 これらの円は平面をいくつの部分に分け 「平面上にn個の円があって,それらのどの2個の円も互いに交わり,3個以 るか。 CHART & THINKING 漸化式を作成し, 解く問題 (求める個数を α とする 1a1, a2, a3, 2 an と ・・・・を調べる (具体例で考える ) の関係を考える ( 漸化式を作成) ① まず, n=1, 2, 3 の場合について図をかくと、下のようになる。 基本 29 1章 この図を参考に, an+1 を an との式で表した漸化式を作ろう。 円を1個追加すると, 平面の部分は何個増加するだろうか? n=1 n=2 n=3 漸化式 入。 の A ⑤ 7 ④ ③ 平面の部分は+2 (交点も+2) 平面の部分は +4 (交点も+4) 答 n個の円によって平面がα 個に分けられるとするとa=2 分割された弧の数と同じだ 平面上に条件を満たすn個の円があるとき,更に,条件を満け平面の部分が増える。 たす円を1個追加すると, n個の円とおのおの2点で交わる から交点が2個できる。 この2n個の交点で, 追加した円 が 2n個の弧に分割される。これらの弧によって, その弧が 含まれる平面の部分が2分割されるから, 平面の部分は 2n 個だけ増加する。 0 よって ant=an+2n ゆえに an+1-an=2n よって, n≧2 のとき n-1 an=a+22k=2+2• +2.12(n-1)n=n-n+2 k=1 =2であるからこの式は n=1のときにも成り立つ。 したがって, n個の円は平面を (n²-n+2) 個の部分に分ける。 PRACTICE 35 階差数列の一般項が2n n=1 とすると 1-1+2=2 n≧2 とする。 平面上にn個の円があって, それらのどの2個の円も互いに交わり, 3個以上の円は同一の点では交わらない。これらの円によって, 交点はいくつできる 「か。

解決済み 回答数: 1
数学 高校生

xやyの変域の条件を式から見つけて、作るのが苦手です。何が良い方法はないでしょうか?? この問題で言うと、y^2≧0 からxの範囲を定めるところ等です。

重要 例題 104 条件つきの最大・最小 (2) 文 00000 xyがx+2y=1 を満たすとき,2x+3yPの最大値と最小値を求めよ。 CHART & THINKING 条件の式 文字を減らす方針でいく 変域にも注意 p.124 重要例題 72 は条件式が1次式であったが, 2次式の場合も方針は同じ。 条件式を利用して,文字を減らす方針でいく。 このとき,次の2点に注意しよう。 [1] x, yのどちらを消去したらよいか? 重要 72 →2x+3y2のxは1次,yは2次である。x+2y=1から2=(xの式)としてyを消 L2次 去する。 [2] 残った文字の変域はどうなるか? 2次↑ 問題文にはx,yの変域が与えられていないが, (実数) 2≧0 を利用すると,消去する yの変域 (y'≧0) からxの変域がわかる。 解答 x+2y=1からy=1/2(1-x)・・・① 41 ←を消去する。 y2≧0 であるから 1x20 すなわち x²-1≤0 (x+1)(x-1)≦0 から -1≤x≤1 ...... 2 よって 2x+3y2=2x+2/22 (1-x2)=1/2x2+2x+ 3 ◆消去する文字の条件 (2≧0) を,残る文字 の条件(-1≦x≦1) にお き換える。 [s] 0 2 13 x- + 2 3 6 13f(x) 基本形に変形。 6 この式を f(x) とすると, ② の範囲で 20 -3x²+2x+3/23 21 f(x)はx=/2/23 で最大値 13 6 11 1 0 3 3 x=-1 で最小値 -2 12-3 X 1 == をとる。 また, ①から -2 5 x=1/3のとき y=1/2(1-1) - 18 +9 √10 -- 3 √(x-2)² + 13 よって y=± 6 x=-1 のとき y2=0 よって y=0 したがって (x, y) = (1/3, √10 13 土 で最大値 6 6 (x, y)=(-1, 0) で最小値 -2 ink 設問で要求されてい なくても,最大値・最小値 を与えるxyの値は示し ておくようにしよう。

解決済み 回答数: 1
数学 高校生

8P2(青いマーカー)が何を表しているのかがわかりませんあせ

す操作 が出る 散を求 2章 7 日本 例題 61 13桁の数を作る。 回出 1から9までの数字が書かれている9枚のカードから3枚のカードを抜き出 レ (1) (2) して並べ、 各桁の数の和の期待値を求めよ。 3桁の数の期待値を求めよ。 CHART & THINKING ○桁の数の期待値 各桁の数を確率変数とみる [類 神戸女学院大 ] p.438 基本事項 2| +, 百の位の数をそれぞれ X1,X2, X3 とすると, X1, X2, X3 は確率変数。 うに表すことができるだろうか? (1) 「各桁の数の和」 も, (2) 「3桁の数」 も確率変数である。 X1,X2, X3 を用いて,どのよ 考えよう。 求める期待値はそのまま計算するのは大変。 前の例題で学んだ期待値の性質を使うことを 事項 2 0 一の位、十の位,百の位の数をそれぞれX1,X2, X3 とする。 このとき, X1,X2, X3 の確率分布は次の式で表される。 回 ら, P(X=k)=P(X=k)=P(X=k) ( 6 は同 1 a P(X= (k=1,2,…, 9) 9P3 9 100 (1)X1,X2, X3 の期待値は E(X)=E(X2)=F(X)=210-11/9・10=5 k=1 k=n(n+1) k=1 期待値の性質。 -- 期待値の性質。 よって、 求める期待値は 20 E(X1+X2+X3)=E(Xi)+E(X2)+E(X3) =3.5=15 (100 0 (2) 3桁の数は X +10X2+100X3 と表されるから, 3200100- E(X1+10X2+100X3)=E(Xi)+10E (X2)+100E (X3) 求める期待値は ゆえに =(1+10+100)・5=555 =20 を代入して R=16 確率変数の和と積, 二項分布 PRACTICE 61 3 1から9までの番号を書いた9枚のカードがある。この中から,カードを戻さずに, 次々と4枚のカードを取り出す。 こうして得られたカードの番号を,取り出された順 に a,b,c,d とする。 (1)積 abcd が偶数となる確率を求めよ。西人が自 (2)千の位をα百の位をb, 十の位をc,一の位をdとおいて得られる4桁の数 N の期待値を求めよ。 (X) b

解決済み 回答数: 1
数学 高校生

(3)の問題です。解説をみたのですが、黄色の線を引いたところです! この4はどこから出できたのでしょうか?教えて欲しいです🙇‍♀️

重要 例題 33 同じものを含む円順列・じゅず順列 00000 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが1 個ある。 玉には,中心を通って穴が開いているとする。 (1)これらを1列に並べる方法は何通りあるか。合 (2)これらを円形に並べる方法は何通りあるか。 (3) これらの玉に糸を通して首輪を作る方法は何通りあるか。 CHART & THINKING 基本18, 重要 22 (2)円形に並べるときは,1つのものを固定の考え方が有効。固定した玉以外の並び方を 考えるとき,どの玉を固定するのがよいだろうか? (3)「首輪を作る」とあるから,直ちに じゅず順列=円順列 2 でよいだろうか? すべて異なるもの なら、じゅず順列で解決するが,ここで は,同じものを含むからうまくいかない。 その理由を右の図をもとに考えてみよう。 答 000 左右対称 裏返すと同じ人 0 OL 9! 9.8.7 -=252 (通り) 同じものを含む順列。 6!2! 2.1 (1) 1列に並べる方法は (2)透明な玉1個を固定して、残り8個を並べると考えて 8! 8・7 -=28(通り) 6!2! 2.1 (3)(2)の28通りのうち,図 [1] のように 4通り [1] 左右対称になるものは よって,図[2]のように左右対称でない 円順列は 19文の [2] 赤玉6個、黒玉2個を1 列に並べる場合の数。 inf. (2) について, 解答編 p.213 にすべてのパターン の図を掲載した。 左右対称 でないものは、裏返すと一 致するものがペアで現れる ことを確認できるので参照 してほしい。 307 1章 3 組合せ 28-424 (通り) この24通りの1つ1つに対して, 裏 返すと一致するものが他に必ず1つ ずつあるから,首輪の作り方は 24 4+ =16(通り) 2 PRACTICE 330 する これらを1列に並べる方法は の下にひもを通し、

解決済み 回答数: 1
英語 高校生

この文章を35~40単語でわかりやすく要約して欲しいです

The Story of Holly Butcher 目標時間2分11秒 act Part 1 haky A 本文をスラッシュ(/)の区切りに注意して読んでみよう。また、必要な書き込みをしよう A Note Before I Die ●込もう。 abioW weИ [1] I've had a lot of time / to think about life / these past few months, and I want to share/ some of my thoughts. It's a strange thing / to realize and accept / that you're mortal/ at the age けて単! 2b10W w9M of 26. But the clock keeps ticking / and I know / death is fast approaching. I always imagined myself growing old / with wrinkled skin and grey hair / after raising a beautiful and loving family. Even now / I still want that so bad / that it hurts. [2] Life is fragile, precious, and unpredictable, and each day is a gift, / not a given right. I'm 27 years old now. I love my life and I am happy. I don't want to leave the world, / but that decision is out of my hands. [3] I'm not writing “A Note Before I Die" / so that people will fear death. In fact, it's good/ that we are not constantly thinking / about its inevitability. For the most part, / death is often considered a "taboo" topic, / especially among young people. I want people to remember/ that we all suffer the same fate / in the end. So, stop worrying / about the little issues/ that cause meaningless stress / in everyday life. Whenever you start complaining / about unimportant things,/think about those people / who are actually facing serious problems / and be grateful/ that your problems are minor ones. Take a deep breath of the fresh air, / and be thankful/that you are able to breathe it in. 1. H OP 訳 2. 22 訳 3. 33 activity B 各段落のトピック

回答募集中 回答数: 0