学年

質問の種類

数学 高校生

線を引いたところの意図がよく理解できません。mのとこがわかってないのですがどういうことか教えていただきたいです🙇

[2]複素数1の12乗根を 20, Z1,Z2,…, z11 とし, Zo=1とする。 Zkk=0,1,2, ....... 11) の偏角を0とし, 0=0<<<<<2πとすると T 0₁ = = Ok オ H である。 オ の解答群 Z₁ = 1 2 Zk=cos 2KTL 12 2kT tisin k 12 π ① ん6 k π 4 k+1 12 k+1 π π 6 k+1 4 2k-1 2k-1 2k-1 π ⑥ 12 一π ⑦ π ⑧ TC 6 4 Zk"=Zzkとなる2以上で最小の自然数をMと表し, kの値によってMの値が どうなるか, 太郎さんと花子さんは考察している。 太郎:20,21,22, ......, Z11 を複素数平面上に図示するとどうなるかな。 花子: 20,21,22, ..., Z11 の絶対値はどれも1だから, 偏角について考える とよさそうだね。 太郎: 点 z12は点z2 と重なるね。 花子: 点 21, 214, ······についても同じように考えると, k=1のときのMの値 がわかるね。 k=1のときM=13であり, k=2のときM= である。 m Z₁ = Z₁ M M=3 となるようなんの値はん=キである。 Z2 =Zk 2x=1 複素数平面上の (M-1) 個の点 Zk, k, なんの値は ZkM M-1 が正方形の頂点となるよう m Z=Z k= ク ケ 3 =Z21d⑤ M-I Z=101 である。ただし、ケとする。 Z2:cosネルtigin/co1g fisin/cosotismQ T=0+2nπL k=6n 10.6 (第3回 25 ) M- (costism) M-I cosmos='ntisinnoyin=cosQ+ismo 1=7 min 共

回答募集中 回答数: 0
物理 高校生

物理基礎の力のつり合いの問題です。基本例題8で、ボールに働く力についてで、いくつか質問があります。 ①Fはバネを右に引いた力と同じですか? ②ボールを右に引く力が働いたら、その反作用でボールが左にバネを引く力がないのはなぜですか? 作用反作用がいつ働くのかがいまいちわかって... 続きを読む

例題 解説動画 基本例題8 力のつりあい 基本問題 58,596465666768 軽い糸の一端を天井につけ、 他端に重さ 2.0Nの小球 をつなぐ。この小球に, ばね定数10N/m の軽いばねの 一端を取りつけ,他端を水平方向に静かに引いた。 糸が 鉛直方向と60°の角をなして小球が静止しているとき 力の ばねの自然の長さからの伸びは何mか。 C 2.0N 10N/m 60° 00000 指針 小球は、重力, ばねの弾性力, 糸の 張力を受けて静止しており,それらはつりあって いる。 ばねの弾性力をF[N], 糸の張力をT〔N〕 と すると, 小球が受ける力は図のように示される。 力を水平方向と鉛直方向に分解し, 各方向におけ る力のつりあいの式を立てる。 これからFを求め, フックの法則を利用してばねの伸びを求める。 水平方向:F- T=0 2 鉛直方向: T 2 --2.0=0…② | 解説 水平方向, 鉛直方向のそれぞれの力 のつりあいから, √3 T[N] √ T(N) 30° 720 [N] 式 ②から,T= 4.0Nとなり,これを式①に代入し てFを求めると, F=2.0√3N ばねの伸びを x[m] とすると, フックの法則 「F=kx」 から, F 2.0√3 x= 2.0×1.73 10 10 -=0.346m 0.5m Point F〔N〕 小球にはたらく3つの力がつりあって いるとき,水平方向と鉛直方向のそれぞれの成 分もつりあっている。 V2.0N 基本例題 9 ばねと作用・反作用 同じばね定数の2つの軽いばね A, B を用意する。 ばね Aの一端を壁に取りつけ, 他端におもりをつるして静止さ せる。一方, ばねBは,その両端にそ して静止 基本問題 71, 72,73 LA 0000000000 [知識] 57. 重さと質量 基本 地球上の重力加速度の大き 大きさを地球上の1であるとして、次の各 (1)地球上での重さが294Nの物体の質量に (1)の物体が月面上にあるとき,その質 (3)(1)の物体が月面上にあるとき,その重 [知識 58. 糸の張力 図のように, 質量 1.0kg のお て静止させた。 このとき, おもりが受ける ただし, 重力加速度の大きさを9.8m/s2 と [知識 59. ばねの弾性力 自然の長さ 0.200mの軽 さが 0.240mになった。 重力加速度の大きさ (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ヒント ばねの弾性力の大きさは, ばねの伸びに上 思考 60. ばねのつりあい 表は,軽いばねにさ おもりをつるし、ばねの自然の長さからの ものである。重力加速度の大きさを9.8m/s 各問に答えよ。 (1)自然の長さからのばねの伸びx[m]を 弾性力 F〔N〕を縦軸にとったグラフを描い (2)

回答募集中 回答数: 0
化学 高校生

平均分子量の問題です。 紫のマーカーをした部分がよくわかりません。

また, アボガド 単位に「個 えやす Unit 溶液の 2 章末問題 と 生じた 夜 の濃 質量 × 10 濃度 濃度 c[m 34 問1 次の各問いに答えよ。 (1) 二酸化炭素 1.1g中に存在する酸素原子の数は何個か。 最も適当な数値を,次の① ~⑥のうちから一つ選べ。 1個 1.5 x 1022 3.0 x 1022 6.0 x 1022 ④ 1.5 × 1023 3.0 x 1023 6.0 x 1023 (2) 質量パーセント濃度がα (%) で密度がd (g/cm²) の水溶液がある。溶質の分子量を Mとすると,この水溶液のモル濃度は何mol/L か。 最も適当な式を,次の①~③の うちから一つ選べ。 2 mol/L ad ad 10ad 100ad 10M M M M 10M M M M ⑥ ad ad 10ad 100ad 問2 次の文章を読み, 下の各問いに答えよ。 715g 注射器を用いて気体の分子量を求める実験を行った。 ただし, 実験中の温度は25℃ 大気圧は 1.0 × 10 Pa ですべて一定であったとし,原子 量 N =14016 Ar = 40 とする。 8/201 【実験1】 図のような注射器を準備し, ピストンを押して 注射器中に気体がない状態で質量を測定した。 N2 【実験2】 この注射器に窒素を入れたところ, 体積は120mLを示した。 また, 窒素が N2 入った状態で測定した注射器の質量は実験1の注射器より0.14g増加してい た。 A 【実験3】 ピストンを押して注射器から窒素を追い出し, 注射器の中に気体がない状 態にした。 その後、 ある混合気体 A を注射器に入れたところ, 体積は100mL Mol を示した。 また, 混合気体が入った状態で測定した注射器の質量は実験1 の注射器の質量より0.15g増加していた X (1) 混合気体 A の平均の分子量はいくらか。 最も適当な数値を,次の①~⑥のうちか Hmol ら一つ選べ。 3 ① 33 ② 34 ③ 35 4 36 ⑤ 37 (6 38 (2) 混合気体 Aは酸素とアルゴンで構成されていた。 混合気体 A中の酸素の体積百分 率 (%) として最も適当な数値を、次の①~⑥のうちから一つ選べ。 4 % 40 ④ 50 ⑤ 60 ① 20 (2 30 70 表す の体積

回答募集中 回答数: 0
数学 高校生

1:8についてです 1と8がそれぞれ赤い部分なのか青い部分なのかはどのようにしてわかるのでしょうか?

練 問 84 2つの放物線で囲まれた図形の面積 2つの放物線y=3x +12x ①, y= 5x-12x・・・ ② で囲まれた図形をF とする。 (1) 図形Fの面積Sは, S アイ である。 (2) 放物線 ①②の原点 0 以外の交点をAとする。 直線 OA の方程式はy= ウ x である。 S₁₁: S₁ = I よって、直線 OA と放物線で囲まれる図形の面積を St, 直線 OA と放物線②で囲まれる図形の面積を S, とすると, オである。 (3) 直線 y=mx(m>ウ) が図形 F の面積を1:8に分けるという。 このとき,直線y=mx と放物線 ①で囲まれた [カキ] 図形の面積Sをm を用いて表すと, S, = m. [ケコ] となるから, m の値を求めるとm= である。 (1) 放物線 ①,②の共有点のx座標は, 2式を連立させて -3x + 12x = 5x-12x より よって, 図形Fの面積Sは x=0,3 S₁ = S = =-3x -3x2+12x)-(5x-12x)}dx =-8" x x(x-3)dx = -8.{-1/12(3-0)2}= (2)x=3を① に代入すると, y=9であるから よって, 直線 OA の方程式は y=3x であるから =S-3 = 36 A(3, 9) -3x2 +12x)-3x}dx 1 =-3fx x(x-3)dx= -3• -3.{-(3-0)} = 27 27 45 S = S + S2 より Sz = S-S=36- 2 2 27 45 したがって S1 S2 = =3:5 2 A St 0 3 S S₁ = −3 ſ*x(x− 3)dx S2= =S(3x-(5x-12x)}dx (3)m>3において, 直線 y=mxが0<x<3 の範囲で放物線 ①と 交わるとき, y = mx と ① を連立させて x{3x-(12-m)}= 0 より x = 0, 12-m 0<- <3より3m<12 3 12-m 3 Ss= 12-m 3 mx = -3x2 +12x {(-3x²+ 12x) - mx}dx =-3 12-m 12-m -3√ √(x - 12m)dx --3-1-1/2 (12="_o)'}= (12-m) = =3 3 54 直線 y=mx が図形Fの面積を1:8に分けるとき, =-5x(x-3)dx であるから,定積分の値を計算 しなくても S:S2 = 3:5 とわ かる。 (12-m)3 9S3 S が成り立つから 9. = 36 54 よって (12-m)=216 12-m は実数であるから, 12-m=6より これは3<m 12 を満たすから m = 6 090 m = 6 216=6 放物線と1直線,2放物線で囲まれた図形の面積は,∫(x-a)(x-B)dx = 1/2(B-α) を利用せよ 6 (p.171) 右の図のような面積を求めるときには,必ず f(x-1)(x-B)dx=-1/2 (B-α)が利用できる。 6 この公式を用いるときは,面積を定積分で表してから,x2の V KV B 係数αをくくり出して Saf (xa)(x-β)dx の形で表すことが大切である。5円

回答募集中 回答数: 0