学年

質問の種類

数学 高校生

数列の問題です。(2)で、d(r)=1から2≦r≦9となる理由がわからないです。教えて頂きたいです。

数学B- -111 arを自然数とし,初項がα,公比がの等比数列 α1, 2, 3, ... を {a} とする。また,自 総合 数Nの桁数をd(N) で表し,第n項がbn=d(an)で定まる数列 bi, 62, ba, ...... を (6) とす る。このとき、次の問いに答えよ。 (1) a=43,r=47のとき, baとを求めよ。 (2)a=1のとき, 1<<500において, {6} が等差数列となるrの値をすべて求めよ。 (1) an=43.47"-1であるから α は 5桁であるから a=43・472=94987 63=5 [類 滋賀大 ] 本冊 数学 B 例題11 ←直接値を計算し,桁数 を調べる。 総合 また α7=43476 よって 40' <a<507 ここで 507=57・107=78125・107=7.8125・10"1012 40'=214・107=16384・107=1.6384・10">10" ゆえに 10"<α <1012 したがって, α7 は12桁であるから (2)a=1のとき an=rn-1 =1であるから b1=1 b=12 ①まず初項を求める。 bn は an の桁数であるから, 自然数である。 また,{bn} 等差数列となるとき,公差をdとすると d=b2-b1=d(a2)-1=d(r)-1 d(r) は自然数であるから, dは0以上の整数である。 ここで, d=0 とすると, すべての自然数nに対してbn=1 また, d(r) =1から 2≤r≤9 このとき, α5=≧24=16であるから これはbs=1に矛盾するから すなわち, dは自然数である。 b5≥2 d=0 ←40 <43 < 50, 40 <47 <50から。 43・47 の値は求めにく いから 10の倍数で挟み、 407,507 の桁数を調べる。 ←d=bn+1-6nl ←d(r) は自然数rの桁数。 ←d≧1となること (d≠0 であること)を背 理法で示す。 10b-l≦an<10 であり, bn=1+(n-1)dあるから 10(n-1) d≦rn-1<10(n-1)d+1 ...... n≧2のとき,①の各辺は正であるから ① ←Nの整数部分が桁 101N<10% 10d≤r<10d+n ①' 1 <r <500 とdが自然数であることから d=1, 2 ←①の各辺を 1 カー乗。 ←d≧3のときは, d=1のとき, 'から 10≦x<10's(=10.10㎡) 10≧1000 となり、不適。 これが2以上のすべての自然数nで成り立つような自然数 ←nの値が大きくなるほ はr=10であり,このとき {bm} は初項 1, 公差 1 の等差数列と (1)(1)ール なる。 ど, 1 n-1 の値は0に近 づいていく (必ず正)。 d=2のとき, ' から 100≦x<10㎡(=10010 よって これが2以上のすべての自然数nで成り立つような自然数 =100であり,このとき {bm} は初項1,公差2の等差数列 となる。 10<10・10両<11とな るようなnが必ず存在 する。 以上から r=10, 100

解決済み 回答数: 1
数学 高校生

(c)を考える時に2枚目のように場合分けをしますが、(a1,a2,⋯,an,1)と(b1,b2,⋯,bn,0)の場合はなくていいんですか??

(3) 2以上の自然数nに対して, 0と1をn 個並べたもの,すなわち各え 1,…….. n に対して of = 0 または as a ai " て得られる (a,………… (a1,・・・ バイナリーベクトル (a1,・・・・・ ,an) 10m) と ・,an) をn次元バイナリーベクトルとよぶ。 2つのn次元 =1であるようなai を順にn個並べ ・on) に対して、あるに対して man)と (b1,......, 6m) は隣接するという。 n次元バイナリーベクトル全体の集合をBで Js031# FOR Q, b; であり,それ以外のうについては aj = b, となるとき, (a1,...... = そわけか。 表すことにする。 例えば, n=3のときは B3 = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)} SKLE $164. であり,(0,0,0)と (1,0,0) は隣接し, (0,1,1) と (1,0,0) は隣接しない。 B の中 から隣接する2つのn次元バイナリーベクトルを取り出すとき, 取り出し方の組 み合わせの総数を M² と記す。 このとき、以下が成り立つ。ち 立。 (a) M2 ヤである。 = = SARA (b) M3= ユヨである。 = (c)2以上のすべての自然数nに対して, Mn+1 立つ。 30 @= ラ M + リが成り n ER C (d) すべての自然数nに対して, Mn+1 = (n+ルレ”である。 OA BA301008 (4) +BA

解決済み 回答数: 1
理科 中学生

問5がなぜ答えがイになるのか分かりません。 2、3枚目が問題です。解説には 水酸化バリウム水溶液の濃度を2倍にすると、液中に含まれるイオンの数が2倍になるため、硫酸を中性にするために必要な質量は半分で、22.5÷2=11.25(g)となる。この時、水酸化バリウム水溶液を加... 続きを読む

カの中から一つ選び, その記号を書きなさい。 (4点) す。 加える水酸化バリウム水溶液の質量と生じる沈殿の質量の関係を表すグラフを, 次のア~ 実験1で使用した水酸化バリウム水溶液の質量パーセント濃度は1%でした。 うすい硫酸 N 5 の濃度を変えず, 水酸化バリウム水溶液の濃度のみを2%に変えて実験1と同じ操作を行いま 生じる沈殿の質量g 生じる沈殿の質量g 0.6 生 0.5 0.4 0.3 0.2 [g〕0.1 0.6 0.5 0.4 0.3 0 7.5 15.0 22.5 30.0 加える水酸化バリウム 水溶液の質量〔g〕 0.2 (g) 0.1 ア H 7.5 15.0 22.5 30.0 加える水酸化バリウム 水溶液の質量〔g〕 生じる沈殿の質量g 0.6 0.5 生じる沈殿の質量g 0.4 0.3 0.2 (g) 0.1 してき 0 0.6 0.5 0.4 0.3 0.2 7.5 15.0 22.5 30.0 加える水酸化バリウム 水溶液の質量 〔g〕 (g) 0.1 0 イ 0 4 生じる沈殿の質量g 0.6 7.5 15.0 22.5 30.0 0.5 0.4 0.3 0.2 (g) 0.1 生じる沈殿の質量g 20.6 0.5 0 加える水酸化バリウム 水溶液の質量〔g〕 0.4 0.3 0.2 (g) 0.1 四水 0 ウ 7.5 15.0 22.5 30.0 0 7.5 15.0 22.5 30.0 加水酸化バリウム加水酸化バリウム 水溶液の質量〔g〕 カ 50:

回答募集中 回答数: 0
物理 高校生

右ネジをどのようにこれ使ってるんですか?磁力の向きないから分からないですよね。

電車の回生ブレーキは、 減速するときにモーターを発電機として 388 動くコイルに発生する誘導起電力 右図のように。 長い直 線状の導線にI[A]の電流が流れている。 1辺の長さが[m]の正 方形コイルを導線と同じ平面内に置き、矢印の向きにv[m/s]の 速さで動かす。 コイルの辺PSが導線 A から [m]の位置を通過 する瞬間,コイルに流れる電流を求めよ。ただし,コイルの抵抗 R〕 真空の透磁率を仰4 [N/A2] とし, コイルの自己インダ センサー 130 133~ クタンスは無視する。 389] 誘導起電力 右図のように, 鉛直上向きに磁束密度 B[T] の磁界がある。 長さ [m] の金属棒 OP が 点Oを中心 として水平面内を角速度ω 〔rad/s]で回転している。 OP の誘 導起電力の大きさはいくらか。 また, 点0と点Pのどちらの 電位が高いか。 センサー 134 M IN PAD b A S! kr→ JAB 解 390 モーターの原理 右図で, コの字型の回路が水 平面内に置かれていて、 磁束密度B[T]の一様な磁界 が鉛直上向きにかかっている。 Eは起電力 E〔V〕 の電 池 M 質量 [kg]のおもりである。 摩擦はないも のとし 回路を流れる電流のつくる磁界は無視できる ものとする。 コの字型の導線の間隔を[m], 重力加 速度の大きさを g〔m/s ] とする。 導体ab には R[Ω]かり!! 〕 の電気抵抗があるものとし、質量は無視する。 AB a 凸 TES E (1) スイッチ Sを入れたところ,Mは上向きに静かに動き出した。 スイッチを入れた 直後の,回路を流れる電流 I [A] とおもりの加速度α〔m/s'] を求めよ。 (2) おもりの速さが一定になったとき, 回路を流れる電流 電池の消費電力 おもりの 速さ,1sあたりに導体 ab で発生する熱量とおもりを持ち上げる仕事率を求めよ。 132

回答募集中 回答数: 0
物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0