学年

質問の種類

地学 高校生

教科書に載ってる問題で答えないので合ってるか見てほしいです💦

1章 1節 地球儀と地図 スキル SKILL 等時帯図を読み解く 30° 60° 1+20° 150 180° 150° 1205 88 90 World Time Zone資料 ほか 1410 +11 60° オスロ +3 +5 +9 +12 -9 アンカレジ ロンドン 10 ヴァンクーヴァ 世界の等時帯 同じ標準時を使う 地域のことを等時帯 といい, この図は各 地域の標準時とグリ ニッジ標準時との時 差を示している。 40° カサブ SOカシ 2+3:30~ +5:45, ペキン 50 東京 カイ 20 +3 +6:30 45:30 ON 日付変更線 シアトル サンフランシスコ・ ロサンゼルス ワシントンD.C. 13:30 ーヨーク ナイロビ +5:30 | 標準時間帯 12 -11 ホノルル [+13] '+140 5 IL 独立時間帯 +9:30 (2021年) 赤数字はグリニッジ ○ケープタウン +8,45 シドニー |標準時との時差 (単位:時間) +12:45 9:30 -3 サンティアゴ ブエノスアイレス +5 メルボルン ※サマータイム制度を 実施している国・地 域もある 日本より時刻が遅い地域 +1 +2 +3 +4 +5 日本より時刻が 早い地域 日本より時刻が遅い地域 +6 +7 +8 +9 +10 +11 +12-12 -11 -10 -9 -8 -7 -6 -5-43-2 Let's TRY STEP 1 図4の等時帯図から東京とニューヨークのグリニッジ標準時との時差を読み取ろう。 東京(9時間) ニューヨーク(5時間) 図中の赤数字に 注目しよう。 STEP 2 STEP1 の結果より,東京とニューヨークの時差は何時間だろうか。 ( (4) 時間 STEP 3 ( 8日午後24時 日本で 8月8日午前11時00分から世界へ生放送された男子バスケットボールの決勝は、ニューヨークでは 何日の何時から放送されただろうか。 ただし, ニューヨークでは1時間のサマータイム制度を実施している。 00分) じっし

回答募集中 回答数: 0
物理 高校生

22番の問題が分かりません…できれは詳しく説明してもらいたいです!!お願いします🙇‍♀️

3 加速度と等加速度直線運動 月 加速度 単位時間当たりの速度の変化。 加速度は、 速度と同じように大きさと向きをもつ。 T 運動。 初速度か [m/s], 加速度α [m/s]の等加速 6 等加速度直線運動 一直線上を一定の加速度で進む 加速度の単位 1秒間に速度が1m/s の割合で変化す る場合の加速度を基準にとり、 1m/s とする。 平均の加速度 時間 Jr[s] の間の速度の変化が [m/s] のとき、 平均の加速度(m/s7は 線運動で, t[s] 後の 速度を [m/s] 変 位を [m] とすると, 次の式が成りたつ。 初め [] 後 a 0 変位 速度が 速度の変化 時間 dv at v=vo+at at 【例10 等加速 30m/sの (1) 2.0秒後の物体 (2) 2.0秒後までに 解物体 [portat] *D 30+1.5× 面積 12/24 af 瞬間の加速度 平均の加速度の式で、 をきわめて 短くとると瞬間の加速度となる。 x=vot+ afa 1 Vo 面積 Bod v2-v²=2ax 時間 23. 等加速 体が、一定の □21. 平均の加速度 次の各場合について、 物体の平均の加速度はどの 向きに何m/s"か。 21. (1) 4.0 秒後の (1) (1) 一直線上を正の向きに 3.0m/sの速度で進む物体が, 4.0秒後に正の 向きに9.0m/sの速度になったとき。 (2) (2) 4.0秒後 (2) 一直線上を正の向きに8.0m/sの速度で進む物体が, 6.0 秒後に負の 向きに4.0m/sの速度になったとき。 24. た後、初 で通過し □22. 加速度 物体が静止の状態から動き始めて一直線上の運 動を続けた。 その0.10 秒後, 0.20 秒後, 0.30 秒後, ...... の到達 距離を測定して表にまとめた結果が下の表である。 22. (1) 表に記入 速さ [m/s] 3.0 時間(s) 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 距離 (m) 0 0.02 0.08 0.18 0.32 0.50 0.72 0.98 2.5 2.0 平均の速さ(m/s) (2)1.5 1.0 (1) 表の値から各 0.10 秒間の平均の速さを求め, 表の中に書き 入れよ。 0.5 0 (2) 物体の運動のv-t図をかけ。 (3) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 時間 t [s] 25. 斜面 は正 た (3) 物体の加速度の大きさは何m/s2 か。 (2) (1)で求めた平均の速さを、その時間 の中央の時刻での速さと考える。例え ば, 0.10~0.20 秒での平均の速さは, 時刻 0.15 秒での速さとみなす。 し (1)

回答募集中 回答数: 0
数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。教えて下さい。

実戦問題 10 軸が変化する2次関数の最大・最小 αを定数とする。 2次関数 f(x) = x +2ax+3α² 4 の区間 0≦x≦4 における最大値を M, 最小値を とする。 (1)a=1のとき,M = ア m= イウ である。 (2) 放物線y=f(x) の頂点の座標は α<キクのとき M=ケ I a. a² 力 であるから,最大値 M は コ a≧ キクのとき また, 最小値 mは M = サ a² + a+ スセとなる。 a<ソタ のとき m= チ a² + ツ α+[テト] ソタ ≦a<ナ のとき a≧ナのとき m= a² m = ネ a² - となる。 (3)αの値が変化するとき、 M-mは α = ハヒ のとき最小値フ をとる。 解答 (1) α = -1 のとき f(x)=x²-2x-1=(x-1)2-2) よって, f(x) は区間 0≦x≦4 において> y=f(x) 7 放物線y=f(x)の頂点の座標は (-a, 2a²-4) (S-1) Key 1 区間 0≦x≦4 の中央の値はx=2であるから, f(x) の区間 0≦x≦における最大値 M は (i) -a >2 すなわち a < 2 のとき M = f(0)=3a²-4 (ii) -α ≦2 すなわち a≧-2 のとき M = f (4) = 3a² +8a+ 12 次に,f(x)の区間 0≦x≦4 における最小値mは 最大値 M = f(4) = 7, 最小値 m = f(1) = 2x8+z(+5) (2) f(x) = (x+α) +2a2-4 と変形できるから 01 -1 4x -2 (i) y y=f(x)! Key 1 (!!!) -α > 4 すなわち α < 4 のとき O 2T4 a (ii) YA y=f(x) PA m=f(4)=3a² + 8a +12 (iv) 0 <la≦4 すなわち -4 ≦a <0 のとき m=f(-α)=2a2-4 (via すなわち a≧0 のとき m = f(0)=3a²-4 (3)(2)(i)~(v) より, M-mの値は M-m4 01 (ア) a <-4のとき M-m=3a²-4-(3a²+8a +12) =-8a-16 (イ) -4 ≦a <-2 のとき M-m=3a²-4-(2a²-4) = a² (ウ) −2≦a <0 のとき M-m=30°+8a + 12 - (2α-4) = (a+4)2 (エ) a≧0 のとき M-m=3a²+8a+ 12-(3a²-4) = 8a+ 16 (ア)~(エ)より, M-mのグラフは上の図のようになる。 グラフより, M-mは a=-2 のとき 最小値 4 () a 12 4 x y=f(x) 0 44X a 16 (iv) y y=f(x) 0 a 4 x (v) y 2 0 a y=f(x) a0 4 X 6

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

3)を解いてみたのですが計算方法が合ってるか分かりません。 おそらく与式は2枚目のようになると思います。 2)の解答に自信はないですが以下の通りです。 A1=0,A2=1/2,B1=1/2,B2=1,C1(u)=u, C2(u)=1-u また、2)についてもし間違いがあれば... 続きを読む

S1. n を自然数x,yを実変数として,以下の設問に答えよ. 1) 式 (S1.1) を用いて, 式 (S1.2) の広義積分Iを無限級数で表すことを考える. この無限級数の第n項 αm を求めよ. -* (|| < 1) (S1.1) n=0 1 = = L L 1 1 dady=Σa (S1.2) 10 - xy n=1 2) 式 (S12)のIを(x,y)= (u-vu+g) で変数変換をしたうえで, 式 (S1.3) の ようにL, I2に分解する. ただし, 式 (S1.3) は式 (S14), S1.5), (S1.6) を満 たす.このとき,下式の A1, B1, Ci (u), A2, B2, C2(u), Dにあてはまる定数ま たは関数をそれぞれ答えよ. ただし, A1 A2 とする. I=h+I2 (S1.3) ・Bi ·C₁(u) = - AL B2 g(u, v)dv du (S1.4) 0 C2 (1) = g(u, v)dv du tv) du (S1.5) (S1.6) I2 g(u,v) = 0 D 1-2 +02 3)問2) のの値を求めよ. 必要ならば, 式 (S1.7), (S1.8) を用いてよい。 d = dx 1 (arctanz) (S1.7) 1+α2 1 (|x| < 1) (S1.8) 1-2-0-8(1+3) (1-22) (1 4)問2)の12の値を求めよ. 必要ならば, 式 (S1.7), (S1.8), (S1.9) を用いて よい. 1- cos x tan sin a 2-2 I (sinz≠0) 5) 式 (S1.2) の無限級数の和を求めよ. (S1.9)

回答募集中 回答数: 0