学年

質問の種類

数学 高校生

“AD=”の【ニ】から解き方が分かりません💦 簡単な式だけでいいのでお願いします

〔2〕 幅20cmのトタン板を折り曲げて雨樋を作る。 大雨が降ってもできるだけ 雨樋から雨水が漏れることがないように、断面積が最大になるように作りたい。 (1) 図1は, トタン板を断面が三角形になるように折り曲げたときの断面図である。 断面の△ABCにおいて, 辺ABの長さをxcm, ∠ABC = 0,断面積を Scm とする。 このとき, Sはxと0を用いると 0 をとる。 ソ S = タチ と表すことができる。 xを固定して考えると、 Sは0= タチ のとき最大となる。 sin サ の解答群 B 図1 x2 + スセx のとき, Sは x= ツテで最大値 トナ 1 cos ソ (第3回3) ② tan 0 (数学Ⅰ・数学A 第1問は次ページに続く。) (2) 次に, トタン板の断面が図2のように, AD // BC, ∠BAD=∠CDA, AD > BC である台形 ABCD になるように折り曲げたときを考える。 x= AD= ヌ 台形 ABCD において、 改めて辺ABの長さをxcm, ∠BAD=0 とする。 このとき, ADの長さはxと0を用いると ノハ ヒ x の解答群 ⑩ sin 0 B = x. と表すことができる。 断面の台形 ABCDの面積を Scm² とすると, ∠BAD = 60° のとき, Sは ヌ 20-24 図2 で最大値をとる。 C +20- ネ cos 台形 ABCD が内接する円の半径は x フへ (3) (2) 台形 ABCD は円に内接している。 ∠BAD=60°, x= ホ (2 tan 0 (第3回 4 ) cm である。 ヒ のとき

回答募集中 回答数: 0
数学 高校生

“AD=“の【ニ】から解き方が分かりません!!💦 どなたかお願いします

〔2〕 幅20cmのトタン板を折り曲げて雨樋を作る。 大雨が降ってもできるだけ 雨樋から雨水が漏れることがないように、断面積が最大になるように作りたい。 (1) 図1は, トタン板を断面が三角形になるように折り曲げたときの断面図である。 断面の△ABCにおいて, 辺ABの長さをxcm, ∠ABC = 0,断面積を Scm とする。 このとき, Sはxと0を用いると 0 をとる。 ソ S = タチ と表すことができる。 xを固定して考えると、 Sは0= タチ のとき最大となる。 sin サ の解答群 B 図1 x2 + スセx のとき, Sは x= ツテで最大値 トナ 1 cos ソ (第3回3) ② tan 0 (数学Ⅰ・数学A 第1問は次ページに続く。) (2) 次に, トタン板の断面が図2のように, AD // BC, ∠BAD=∠CDA, AD > BC である台形 ABCD になるように折り曲げたときを考える。 x= AD= ヌ 台形 ABCD において、 改めて辺ABの長さをxcm, ∠BAD=0 とする。 このとき, ADの長さはxと0を用いると ノハ ヒ x の解答群 ⑩ sin 0 B = x. と表すことができる。 断面の台形 ABCDの面積を Scm² とすると, ∠BAD = 60° のとき, Sは ヌ 20-24 図2 で最大値をとる。 C +20- ネ cos 台形 ABCD が内接する円の半径は x フへ (3) (2) 台形 ABCD は円に内接している。 ∠BAD=60°, x= ホ (2 tan 0 (第3回 4 ) cm である。 ヒ のとき

回答募集中 回答数: 0
数学 高校生

(2)がよく分からないんですが教えてください!🙇

(2) 次の問題について考えよう。 △ABCにおいて, BC=√2, ∠ABC=60° ∠ACB=45° とする。 辺ABの長さ, および sin <BAC の値を求めよ。 セ (1) 太郎さんは、この問題を解くために、次の構想を立てた。 c0760- 太郎さんの構想 ∠ABC, ∠ACBの大きさから,それぞれの対辺である辺 AC, ABの長さ の比の値を求める。 AC-AB+B=ABICBCo5 ABC AC AB COS ∠ABC= セである。 また, sin∠ABC= sin∠ACB= タであるから, 正弦定理により が成り立つ。 COS ∠ABC= である。 よって, AB=x とおくと, 余弦定理により チ チ 01/1/12 ① 6 2 ツ √6 ② 8:1/260 = ⑦ イディオム ト √2 A COS CABC- の解答群 (同じものを繰り返し選んでもよい。) 13²+C²-213C (2 2 x COSABC ²42 √6 2 - 28 - 1². B²+C² - 2Bc cosa -√2 (8 /6 3 √3 (4) 2 ⑨ /6 3 (数学Ⅰ・数学A 第1問は次ページに続く。) △ABH に着目すると AH= AH= (2) 花子さんは、この問題を解くために、次の構想を立てた 花子さんの構想 BCの長さを辺AB, ACの長さを用いて表す。 点Aから辺BCに引いた垂線と辺BCの交点をHとして,線分 AH 辺 が成り立つ。 ナ AC AB である。 また, BC=BH+CH により ⑤ BC= 2 AC であるから √3 2 ★ - AB= ネ である。 また チ ヌ AB+ ① 6 /6 sin ∠BAC= ネ ② 2 2 |AC ナム AB であり、△ACH に着目すると であることがわかる。 ただし, ヒト+ no--no UT へ3 一般に、三角方程式や後で学ぶ三角比を含む不等式を解くには、 のを利用する。 を用いた三角比の定義は次のようなものであった の解答群(同じものを繰り返し選んでもよい。) 16 2 ビ sino-y.cosx.tan02 (090°) (p.1671③) 象 180 のとき がって, A1, 0) 座標が... (3) 太郎さんの構想または花子さんの構想を用いることにより フェ - 29 - AH-AB 7 (3 数学Ⅰ・数学A 8 フ AC √6 3 AB √2 2 9 とする。 B ・AC √√3 5 OSKI (1) この2点存在する 半径1の円周上 なる点は、図の2 求めるのは、∠A 0-307 (2) 半径1の半円 となる 求めるのは、 4:1919 -15c51% 0- (3) 直線x=1 る点をTとす この半円の共 求める0は in 解答・ (1) (2) co (3) ta PRAC 20 (4 ん、花子さん を正しく理

回答募集中 回答数: 0