学年

質問の種類

数学 高校生

(1)、(2)両方教えてください!!🙇‍♀️🙏

218 第4章 図形と計量 例題108 余角・補角の公式 sin (90°-0)-sin (180°-0)+cos(90°-0)+cos (180° -0) を簡単にせ よ. (2)(ア)sin 70, cos110°を45°以下の三角比で表せ. (イ) sin 20° cos 110° + sin 70° cos 160°を簡単にせよ. 考え方 90'-8(余角) 180-0(補角)の三角比は下の図のように、三角形の中の辺や 係などをいろいろな視点から見ることが重要である. とくに, 180°-0 のときは、 に注意する. 解答 10 90°- a sin0= a BI = cose-sin0+ sino-cos0 =0 (2)(ア) sin70°=sin(90°-20°) = cos20° cos110°= cos (180°-70°) =-cos70° =-cos(90°-20° =-sin20° C (イ) cos160°= cos (180°-20°) = -cos 20° (ア)より, cos110°=-sin 20° sin70°= cos20° よって, sin 20° cos110°+sin70° cos 160° =sin20°(-sin20°)+cos20℃ -cos 20°) =-sin220°-cos220° =-(sin 20°+cos220°) 0 90°-0 a cos (90°-8)= (2) 90°-6,180°-6 の三角比を利用すると,すべて 20°の三角比に直すことができえ (1) sin (90°-0)-sin (180°-0)+cos (90°-0)+cos (180°-0) A 練習 (1) tan (90°0) tan (180° -0) を簡単にせよ. 108 (2) sin 100°, cos 130° を 45°以下の三角比で表せ. *** 余角の公式を利用 |補角の公式を利用し 鈍角から鋭角に直す 余角の公式を利用 補角の公式を利用 すべて20°の三角比 に直す. sin²0+cos³0=1 (イ) sin 100°+sin110° + cos 160 +cos 170°を簡単にせよ. p. 232 2

未解決 回答数: 1
数学 高校生

⑹で図形の対象性より外接球と内接球の中心が一致すると書いてありますが、 図形の対象性とはどういうことですか?

262 第4章 図形と計量 Think 例題 137 Sing= 正四面体の種々の量 ∠OMA=0 とする.また,頂点Oから平面ABCに下ろした垂線の足を 1辺の長さがα の正四面体OABC で, 辺BCの中点をMとして、 Hとする. 次の値を求めよ. (1) cose (3) △ABCの面積S (5) 正四面体の内接球の半径r [考え方] OH OM 0 1002000010 B A 正四面体の内接球の半径 001 内接球の中心をIとすると, OI, AI, BI, CI で, 四面体を4つ ania. の三角錐に分割したとき,それぞれの角錐の高さが内接球の半 径になる. CODE FOT つまり、内接球の半径は, 三角形の面積を分割して内接円の半 径を求めたアイデアと同様に、分割してみる. 正四面体の外接球の半径 外接球とは 4点 0, A,B,Cを通る球で, 対称性を考えれば, 内接球の中心と外接球の中心は一致する . 外接球の半径は OIになることを利用する. 解答 ∠OMA を含む △OAM に着目すると, on Jend A √√3 OM=AM=- 2 3507-03 また, 対称性より, 点Hは△ABC の重心である。 cos A= a 0 (2) sin0=√1-cos20 3 △OMH において OH = OMsin O √3 2 正四面体は左の図のように回転させても同じような立 体の状況になる. このように図形や立体が対称性をもつ場合,その性質 B を利用して考えるとよい。 (1) 点Hは線分 AM を 2:1に内分 する. ここで,(2) OHの長さを A H 求めるから, 辺 OH を含む △OMH B において, >(2) OH の長さ (4) 正四面体の体積V (6) 正四面体の外接球の半径R -ax THOSEBEN HM _1 OM AM == 3 2√2 3 2√2-√6 3 =- a 0-0000-001 802+024x 8\084-04-2A 0 0 H 1 /3 2 €OC LOCA +06) M AM M **** C -a=AM A B a 160° 20 B M 重心については p.426 参照 sin'0+cos'0=1 を |利用 A BET

回答募集中 回答数: 0
数学 高校生

⑴でどうしてHは重心だと分かりますか?

262 第4章 図形と計量 Think **** 例題137 正四面体の種々の量 1辺の長さが4の正四面体OABC で、辺BCの中点をMとして ∠OMA=0 とする.また,頂点Oから平面ABCに下ろした垂線の足を Hとする。 次の値を求めよ. (1) cose (3) △ABCの面積S (5) 正四面体の内接球の半径r [考え方] 3r 0 √3 OM=AM= -a 2 Sing OH OM B A 正四面体の内接球の半径 内接球の中心をIとすると, OI, AI, BI, CI で, 四面体を4つ の三角錐に分割したとき,それぞれの角錐の高さが内接球の半 00012001 径になる。)に つまり、内接球の半径は, 三角形の面積を分割して内接円の半 径を求めたアイデアと同様に,分割してみる. 正四面体の外接球の半径 外接球とは4点 0, A,B,Cを通る球で, 対称性を考えれば, 内接球の中心と外接球の中心は一致する. 1x8-0014 2 外接球の半径はOIになることを利用する. B "00200001+ 7802 VOS Joat Fred DOT 解答 ∠OMA を含む △OAM に着目すると, cos A= (2) sin=√1-cos20 Foa また, 対称性より, 点Hは△ABC の重心である。 (1) 点Hは線分 AM を 2:1に内分 する. ここで, (2) OHの長さを 求めるから, 辺 OH を含む △OMH において, HM 3 OM 正四面体は左の図のように回転させても同じような立 体の状況になる. (2) OH の長さ (4) 正四面体の体積V >(6) 正四面体の外接球の半径R このように図形や立体が対称性をもつ場合,その性質 を利用して考えるとよい = △OMH において, OH=OM sin O =- 2 =√₁-( 13 ) ² = ²43 ² 2√2 AM AM 3 √32√2√6 ax. 3 3 a 0-0000-2001 EVO2-00-7 0 EV02 + 02-0A 7 H H $300 10CA 0 Baie DA JA -1-02) B V3 2 000 M nia C SUA -a=AM M 11/13 AM A Jes=1 B 0600 I a 2 B M C 重心については p.426 参照 sin' +cos20=1 を 利用 A BET 881

回答募集中 回答数: 0