学年

質問の種類

数学 高校生

1枚目の(2)は3パターンで場合分け2枚目の(2)は2パターンで場合分け このような場合分けの違いはどこから分かるのですか?

E 重要 例題110 2次不等式の解法 (4) 次の不等式を解け。 ただし, α は定数とする。 x²+(2-a)x−2a≤0 計 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0の2次方程 ① 因数分解の利用 それには の2通りあるが、 ② 解の公式利用 は左辺を因数分解してみるとうまくいく。 a<βのとき β<x (x-a)(x-B)>0<x<α, (x-α)(x-B)<0⇒a<x<B βがαの式になるときは,α と B の大小関係で場合分けをして上の公式を α, (2)の係数に注意が必要。 a>0,a=0, a<Qで場合分け。」 (2ax² sax CHART (x-α)(x-B) ≧0の解α, β の大小関係に注意このように分けると 113 金の向きかかわる。 530 解答 (1)x+(2-a)x-2a≦0から [1] a<-2のとき, ① の解はa≦x≦-2 [2] α=-2のとき, ① は (x+2)² ≤0 は x=-2 7:00~でするのは2次方程式 [3] -2 <a のとき, ① の解は -2≦x≦a 以上から a<-2のとき a≦x≦2 元=2のとき x=-2 2<αのとき -2≦x≦a (x+2)(x-a) ≤0 ...... 11 [1] (2) ax≦ax から ax(x-1)≦0 [1] a>0 のとき, ① から よっては 0≦x≦1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よっては すべての実数 [3] a<0のとき, ① から x(x-1)≧0 ① x(x-1)≦0 よって解は x≤0, 1≤x 以上から 練習次の不等式を解け 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のときすべての実数; a<0のとき x≦0, 1≦x to til 11 a 0 する x -2 基 [2] V x [3] tel -2 $3@1> [1] ① の両辺を正の数αで割る。 注意 (2) について, ax≦ax の両辺をaxで割って, x≦1としたら誤り。 なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 (3) 26 Ist 0≦0 となる。 は 「くまたは=」 の意味なので、くと= のどちらか 一方が成り立てば正しい。 ① の両辺を負の数 α で割る。 負の数で割るから、不等号の向き が変わる。 3 2次不等式 13

回答募集中 回答数: 0
物理 高校生

光の干渉に関する問題です。 問4のVの向きがx方向正の向きになる理由が知りたいです。 よろしくお願いします。

次の文を読み、以下の問いに答えよ.して 身近にあるものを使って光の実験を行うため、次のA,B,Cを準備した。 A: 透明なアクリル樹脂の平板(厚み 5.0mm) を2枚重ねて留め具で固定したもの B:牛乳を少量混ぜて少し白濁させた水を入れた透明なペットボトル AMA C: レーザーポインター (波長532nmの緑色レーザー光を出す. 1nm =1×10~9 部屋を暗くしてBのペットボトルにCのレーザーポインターが発する光線を入射して みると, 液体全体が淡い緑色に光った. これは,水を白濁させている粒子によって入射し | され,いろいろな向きに進む光を生じた結果と考えられる 次に,図1のように B の光るペットボトルを A のアクリル板に映してみると,ペット ボトルの像に重なって明暗の縞(しま)模様が見えた.Aに対するBからの光の入射角と反 射角がほぼ0であるような配置で観察すると,図2に示す楕円のような形をした縞模様が 見えた.このとき,アクリル板どうしが密着するようにAを両面から指で押すと,縞模様 の位置や形に変化が生じた.アクリル板1枚だけを用いて実験した場合には縞模様は現れ なかった. B C 図 1 I 図2 cook m) このような縞模様が現れた原因として,2枚のアクリル板の間に薄い空気層があり,空 気層の厚さが場所によって変化していることが考えられる.図3のように、アクリル板1 の中を進んできた入射光は,一部が空気層との境界Iで反射され、残りの一部が空気層に 進みアクリル板2との境界Jで反射される。観測者はこれら2つの反射光の重ね合わせを 見ることになるが, 2つの反射光には経路差による位相の差が生じている.また, 空気と アクリル樹脂の屈折率はそれぞれ 1.0 と 1.5 なので イで反射するときにウ [rad] の位相の差が加わる.このように, 複数の波動が重なり合い特定の場所で強め合う (または弱め合う)現象を という.

回答募集中 回答数: 0
数学 高校生

; はどういう意味ですか?

重要 例題110 2次不等式の解法 (4) 次の不等式を解け。ただし,aは定数とする。 (1) x2+(2-a)x-2a≦0 (2) ax² Max 基本106 指針文字係数になっても, 2次不等式の解法の要領は同じ。まず, 左辺=0 の2次方程式を解く。 ① 因数分解の利用 ②2 解の公式利用 の2通りあるが,ここで それには は左辺を因数分解してみるとうまくいく。 <Bのとき (x-a)(x-β)>0x<α, β<x (x-α)(x-B) <0⇒a<x<B α,Bがαの式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2) x2の係数に注意が必要。a>0,α = 0, a < 0 で場合分け。 ※単に文字は〇で仕分けせよ。 CHART (xーα)(x-β)≧0の解α, β の大小関係に注意 解答 (1) x2+(2-a)x−2a≦0から (x+2)(x-a)≦0 ...... 1① (8) [1] a<-2のとき, ① の解は a≦x≦-2 [1] [2] [3] [2] α=-2のとき, ① は (x+2)² ≤0 よって は x=-2 V D コン [3] -2 <a のとき, ① の解は -2≦x≦a a a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 ANOCE -2 <a のとき -2≤x≤a (2) ax≦ax から ax(x-1) ≤0 ...... [1] a>0のとき, ① から x(x-1)≦0 1① の両辺を正の数αで割る。 126 [ST よって (8) 0≤x≤1 は 「=」で [2] a=0のとき, ① は x(x-1) 成り立ってる 100となる。≦は「<または=」 これはxがどんな値でも成り立つ。 の意味なので, <と= のどちらか 一方が成り立てば正しい。 よっては すべての実数 3月30① の両辺を負の数で割る。 [3] α<0のとき, ① から x(x-1)≧0 よって 以上から x≦0, 1≦x は 負の数で割るから、不等号の向き が変わる。 a>0のとき 0≦x≦1⑨ a=0のときすべての実数: a<0のとき x≦0, 1≦x JBLEC 注意 (2) について, axe Sax の両辺を ax で割って,x≦1としたら誤り。なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 練習 次の不等式を解け。 ただし, aは定数とする。 110 (1) x2ax≦5(a-x) [(3) 類 公立はこだて未来大] (2) ax²>x NYX 2 X. -20 (3) x²-a(a+1)x+a³ <0 18 章 3 2次不等式 13

未解決 回答数: 1