学年

質問の種類

数学 高校生

この問題の3番目の問題についてなんですが,この場合全ての整数が,0,1のどちらかになっていないと成立しないと思ってて,例えば、a1が3で他の解が0の時が想定されてないと思いました。 私の考え方の間違っている部分を教えてください

386 okakaka<a<a<9 次の条件を満たす整数の組 (a1,a2, 3, 4, 重要 例題 34 数字の順列 (数の大小関係が条件) (2) 0≤a≤a2a3 a4 a5≤3 α5) の個数を求めよ。 0000 基本32 88 3個の数字から異な 異なる 4個の数字から重複を 解答 (1) Kaz (3) aitaztastastas≦3, a≧0 (i=1,2,3,4,5) 指針 (1) α1, 2,..., as はすべて異なるから, 1, 2, ・・・・・, 個を選び,小さい順に,a1,a2, ..., as を対応させればよい。 求める個数は組合せ Cs に一致する。 (2)(1) とは違って、条件の式にを含むから, 0, 1, 2, 34 して5個を選び,小さい順に aaaa5を対応させればよい。 求める個数は重複組合せ&Hs に一致する。 (3)おき換えを利用すると,不等式の条件を等式の条件に変更できる。 ataztastastas+6=3 3-(a+a2+as+a+αs) =bとおくと また, a+az+αs+a+αs≦3から b≥0 よって、 基本例題 33(1) と同様にして求められる。 (1) 1, 2,......, 8の8個の数字から異なる5個を選び, 小 さい順に a1,a2, ....., 45 とすると, 条件を満たす組が 1つ決まる。 よって, 求める組の個数は 8C5=8C3=56 (個) (2)0,1,2,3の4個の数字から重複を許して5個を選び, 小さい順に α1, 2, ......, as とすると, 条件を満たす組 が1つ決まる。 よって, 求める組の個数は 4Hs=4+5-1Cs=8C5=56(個) (3) 3-(a1+a2+as+a+αs)=bとおくと a1+a2+as+a+as+b=3, ai≧0 (i=1,2,3,4,5),60 ...... ① よって, 求める組の個数は, ① を満たす0以上の整数の 組の個数に等しい。 これは異なる6個のものから3個取 る重複組合せの総数に等しく 6H3=6+3-1C3=8C3=56 (個) 別解 a1+a2+as+a+as=k(k=0, 1, 2, 3) を満たす 0 以上の整数の組 (a1, A2, 3, 4, 5) の数は5Hであ るから 5Ho+5H1+5H2+5H3 =4Co+5C1+6C2+7C3 =1+5+15+35=56 (個) 検討 一等式 (2),(3)は次のように 解くこともできる。 (2) [p.384 PLU ONE の方法 bi=aiti(i=1,2 4, 5) とすると, 0<bı <b<by<br< と同値になる。』 (1)の結果から (3)3個の○と 切りを並べ、例 ||0|100|| 合は(0,1,0, を表すと考える このとき A|B|C|D とすると,A, D, E の部分に の数をそれぞ a3, 4, as と 組が1つ決ま 8C3=56( 5桁の整数nにおいて, 万の位, 千の位, 百の位、十の位、一の位の数字を a, b, c, d, e とするとき, 次の条件を満たすnは何個あるか。 (1) a>b>c>d>e _3) a+b+c+d+e≦6 (2) a≧bcd≧e

未解決 回答数: 1
数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0