学年

質問の種類

数学 高校生

⑶の問題で、解答の黒線の部分なんですけど、三分のニをニ乗していくと小さくなると思うんですけど、なぜ小なりイコールなんですか??

例題 17 漸化式と極限 (3) a=1, an+1=√2+3 (n=1,2,3, ......) で定義される数列{am} について,次の問いに答えよ. (1)数列{an} が極限値αをもつとき,α の値を求めよ. (2)(1) αについて, anti-alla-al を示せ. (3) lima=α であることを示せ **** 「考え方」 (1) lima=α のとき, liman+1=αであるから, →:00 YA y=x これを与えられた漸化式に代入して考える。 y=√2x+3 求めたαが条件に合うか確認が必要.. (2)(1) で求めた α を代入し, 漸化式を用いて不等式の 左辺を変形する. a2a3 (3) 実際に lima を求める. はさみうちの原理を利用する. a=1 00+11 解答 (1) lima=α とすると, liman=liman+1=α なので, 無理方程式 8118 漸化式 an+1=√2+3 より α=√2α+3 ... ① 両辺を2乗して, α = 2a +3 より, α=-1 は ①を満たさないから. a=3 (2)|a,+1-3|=|√2a,+3-3|=| 2a,+3)-9 α=-1,3 √2an+3 +3 1 == -|2a-6| √2an+3+3 √2an+3+3 よって, a,+1-3|22|47-31は成り立つ。 == la-3≤an-3 (3)(2)より14,-31010,13| 2\n-1 2\2 n-2 3 ここで,4=1より、0a,-3=2....... \n-1 2\n-1 (p.98 参照) a²-2a-3=0 (a+1) (α-3)=0 α=-1, 3 が①を満 たすか確認する. 分子の有理化 √2+3≧0 より √2a+3+3≥3 √2a, +3+3 3 (2)をくり返し用いる. |-3|=|1-3| |=|-2|=2 Focus ② lim2(12/3) 0 とはさみうちの原理より、 →∞ lim|a-3|=0 11-0 よって, lima=3 となり、題意は成り立つ. liman=a= liman+= a 8-8

解決済み 回答数: 1
数学 高校生

赤丸で囲んだところについてです。楕円になる理由は赤丸で囲んだ範囲の下部分の記述だけで十分だと僕は思ったのですが、なぜ赤丸部分を考える必要があるのでしょうか。教えていただきたいです。

2-142 (490) 第6章 式と曲線 例題 C262 楕円 双曲線となる軌跡 : **** 外接し, 円 C2 に内接する円Cの中心Pの軌跡を求めよ. ただし, 円 C 2つの円C: (x-2)2+y^2=4,C2: (x+2)2 +y'=36がある. 円に の半径 r>0 とする. 考え方 円 C (中心 0 ) に円 C が外接するから, O.P=2+r C2 (中心O2) に円 C が内接するから, OP=6-r したがって、0P+OP=8 ~定) T 解 PC, は中心O (2,0), 半径2の 円で, 円 C2は中心O2(-2,0), 半 径60円である。 r C 6 P つまり、 (中心間の距離 0.02) 2つの円の半径の差) =4 T1 -202 101 14x が成立し, C, と円 C2 は 点A(4,0) で接する 円Cと円 C の接点を TL, 円 C C2 の接点を T2 とす る。 円 C は円 C に外接するから, 円 Cは円 C2 に内接するから, OP=0T+TP=2+r O2P=O2T2-T2P=6-r よって, OP+O2P=8 より 求める軌跡は, 20 (20) O2(-2,0) を焦点とし, 焦点からの距離の和 が8の楕円,すなわち、楕円=1である。①に 12 ただし, 点Pと点A(4, 0) が一致するとき 円Cの半径 r=0 となり,r>0 に反するから、 楕円上の点(40) は除 く. Focus x² y² a² (a>b>0) とすると, |2a=8va-F-2 平面上の2定点からの距離の和が一定である点の軌跡・・・・・楕円 距離の差が一定である点の軌跡・・・ 双曲線 注 点P(x,y) とすると, OP2+rより(x-2)+y=2+r 02P=6-r より√(x+2)2+y=6-r 練習 ①+②より(x-2)2+y^+√(x+2)2+y=8 として後は、例題 C2.48 (2)の解答のように考えることもできる。 ただし、半径 r>0より, 楕円上の点A(4, 0) は除く. 2つの円 C (x+2)'+y=9, C2 (x-2)^2+y=1 がある 円 C.C.の両方 C2.62 に外接する円Cの中心Pの軌跡を求めよ。 ただし, 円 C の半径とする。 ***

解決済み 回答数: 1
数学 高校生

この問題の(4)なんですが、2枚目の鉤括弧を書いたところまでは分かるのですが、(-1)がでてくる辺りから分からなくなってしまいます!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

② 24+1-√34 4+4+1=0 (n-1)(w+w+1) = 0 151110 x2x+1-03 高次方程式 10 例題 55 1の3乗根 **** -1+√3i @= 2 とするとき 次の式の値を求めよ. ただし, n は整数と する. (1) W2005 (2) 1+ + 1 @ w" 1 (3)(1+ω-ω^) ( 1-w+ω^) (4) ω'+ (ω+1)2"-1 (岡山県立大改) 考え方 ω は x + x +1=0の解であり,1=(x-1)(x²+x+1)=0 より は =1の 解でもある.つまり,1の3乗根は1ww なので は1の3乗根の虚数のうち の1つである. (ωキ1 であることに注意する.) 75 __1+√3i 解答 W= より、 20+1=√3i 2 両辺を2乗して (2ω+1)=3i, 4ω'+4ω+1=-3 これから使う性質 ついてまず証明し おく. したがって, w2+w+1=0 (1) W2005W2004xw=(ω3)668Xw また, ω-1=(ω-1) (ω'+w+1)=0 より =1 -1+√3i =1668xw=w=- 2 2004=3×668 ω=1 が利用でき るように変形する 1 1 w²+w+1 0 (2)1+ + =0 @ W² W (3) ω²+w+1 = 0 より, 1+w=-w m よって, (1+wlω^)(1-e+w) 通分する. 1+ω°= W 与式に代入でき www うな2種類の変 行う. M =(-ω-)(-ω-) =-2ω²×(-2ω)=4ω=4 (4) ω'+w+1=0 より, w+1=-w したがって, (ω+1)2" '=(-ω^)2=(-1)2" 'ω =(-1)xω-2=3(x-1)Xw" + -1 2(2n-1) まずは (+1) 2 を考える. n+1 2n-1は奇数 =-(13)"-1.1"+1=-W"+1 (−1)'"'=-1 よって, W"+1+(+1)2"-1=W"+"+1=0 '=1 を使える |-2を分け Focus の2大公式 =1, ω°+w+1=0 練習 55 (1)x1=0 の虚数解の1つを とするとき、次の式の値を求めよ. (ア)+ω'+1 (イ) 1+w +ω°+w'+ω'+ω°++w" *** -1-√3i (2) w=- とするとき、次の式の値を求めよ. ただし, n は整数 2 (7) (w²-w+1)³ (1) (1-w)(1-w²)(1-w') (1-w³) 2+(1) 3n

解決済み 回答数: 2
数学 高校生

(2)の問題なんですが、3枚目の自分で解いた解答のやり方が解説にのっていないので、3枚目の私の解答はどこから間違っているか教えてくださるとありがたいです。宜しくお願いいたします🙇

B1-68 (86) 第1章 数 列 例 B1.41 隣接3項間の漸化式(1) 考え方 次のように定義される数列{an} の一般項 am を求めよ。 (1) a=1, a2=2, an 2-2an+1-150=0 (2) a1=3, a2=5, an+2-30m+1+2a=0 (A) 特性方程式の解α, β が α β となる場合 (p. B1-67) である. (1) An+2-2+1-150=0.・・・ ① が ax +2aaμ+1=βan+1 aan) .....② たとする. ②より, an+2-(a+β)an++αβam= 0 |a=5 [α = -3 これより, α+β=2, aβ=-15 だから, lβ=5 または \B=-3 よって、②より 解答 とも Jax+2+3am+1=5 (an+1+3a) lan+2-5an+1=-3(an+1-5am) これより,一般項 α を求めればよい. (2)(A) aβにおいて,とくに α=1 となる特別な場合である。 つまり, an+2-3a+1+2a=0 は, an+2-An+1=B(An+1-an) となり, 数列{ant-am} は {an} の階差数列である。 mi (1)と同様に解くこともできるが,ここでは階差数列の 考え方を使って解いてみよう. ~20x150=0 (1) authen より となる. ......① an+2+3an+1=5 (an+1+3an) lan+2-50+1=-3 (a+1-5a) ②より, 数列 {am+1+3am} は, ③ {a} の階 {anta ① より,-2F wwww (x+3)(x-5)= よって, x=-1 α=-3,β=5 α=5,β=-3 {an+1+3a 初項 a2+3a1=2+3・1=5 公比 5 の等比数列であるから, an+1+3a=5・5"'=5" …④ a2+3a」(n=10) ③より, 数列 {an+1-5am} は, 初項 a2-5a=2-5・1=-3 公比3 の等比数列であるから, a,+1-5a= (-3)(-3)"'=(-3)"...... ⑤ ④ ⑤ より 3a-(-5am)=5"-(-3)" 8a=5"-(-3)" ④ ⑤から 去する. よって、 求める一般項 α は, _5"-(-3)" an= 8

解決済み 回答数: 1
数学 高校生

この問題なんですが、丸で囲んだ3と2はどこからきた数字かが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

3 漸化式と数学的帰納法 (73) B 例題 B1.33 漸化式 an+1=pan+f(n) (p≠1) **** a1=3, am+1=3am +2n+3 で定義される数列{a} の一般項 α を求めよ. 考え方 ■1漸化式 +1=3a+2n+3 において,見をしつ先に進めてα+2とQs+)に関す る関係式を作り,差をとってに関する漸化式を導く。 wwwwwwwwwwwwwwwwww 2αに加える(または引く)nの1次式pn+g を決定することにより, {an+pn+g} が等比数列になるようにする. 解答 -1 an+1=3a+2n+3 ante= 30+1+2(n+1)+3 ......② ② ① より an+2an+1=3(an+1-am)+2 buvandy とおくと, ~~~ b+1=36+2, b=a-a=3a,+2+3-a=11 り bn+1+1=3(b+1), b1+1=12 したがって, 数列{bm+1}は初項 12. 公比3の等比数列 だから, bm+1=12・3" =4・3" b=4.3"-1 -1 ②は①のnn+1 を代入したもの 差を作り, nを消去 する. ①より, a2=3a,+2+3=14 α=3α+2 より α=-1 12・3"=4・3・3"-1 =4.3" 2のとき -1 an a+b=3+Σ(4·3-1)=3+1 12(3"-1-1) --(n-1) k=1 k=1 3-1 =6.3" '-n-2=2・3"-n-2 n=1のとき,a=2・3-1-2=3 より成り立つ. 6.3" =2・3・3"-1 =2.3" よって, an=2.3"-n-2 どこかち? 解答 -2pg を定数とし, au+1+p(n+1)+q=3an+pn+g) とおくと an+1=3an+2pn+2g-p うちの もとの漸化式と比較して, 2p=2, 2g-p=3より,p=1,g=2 したがって, att(n+1)+2=3(a+n+2), a1+1+2=6 いい!!より、数列{an+nは初項 6. 公比3の等比数列 よって, an+n+2=6・3" '=23" より. Focus 練習 どこから n=1のときを確認 an+1+pn+p+g =3a+3pn+3g よ り, an+1=3a+2p2 +2q- an=2.3"-n-2a1=3 an+1=pan+f(n) (f(n) はnの1次式) 差を作り, n を消去して階差数列を利用して考える 注〉 例題 B1.32 (p.B1-53) のように例題 B1.33 でも特性方程式を使うと, α=3a+2n+3 3 りα=-n- となる。これより、au+2=3(mjn+12) 順番になっていない と変形できるが, 等比数列を表していないので,このことを用いることはできない 注意しよう. (p. B1-56 解説参照) 1=2+1=20-2n+1 (n=1, 2, 3, ...) によって定められる数列{a} B1.33 ついて ** (1) by=a-(an+β) とおいて, 数列 {bm} が等比数列になるように定数α. の値を定めよ. (2) 一般項 α を求めよ. (滋賀

解決済み 回答数: 1