学年

質問の種類

数学 高校生

(2)の問題についてです。 計算したあとのmの値が-2と3なのはわかるのですが、なぜ-1が出てくるのか分からないので教えて欲しいです

この (1)xの2次方 に、定数mの値の範囲を定 (2)xの方程式 (+1)x+2(m-1)x+2m-5=0がただ1つの実数料 つとき、定数mの値を求めよ。 CHART&SOLUTION 方程式が実数解をもつ条件 ののた (2次の係数) 0 ならば 判別式 Dの利用 (1)「2次方程式」が実数解をもつための条件は D≧0 2.10% MOITU (2)単に「方程式」 とあるから,+1=0 (1次方程式) の場合と m+1≠0 (27 の場合に分ける 2次方程式の判別式をDとするとの係数? (1) 2次方程式であるからm-2≠0 よって m=2 2次方程 基本 例題 80 右の図のように, BC=20d の三角形ABCがある。 辺 となるように2点D,Eを 垂線を引き、 その交点を 長方形 DFGE の面積が2 の長さを求めよ。 CHART & SOLUTIO 文章題の解法 ① 等しい関係の式で ②解が問題の条件に FG=x として, 長方形 DF xの2次方程式を解く。 最 忘れずに確認する。 ={-(m+1)}-(m-2)(m+3)=m+7 2次方程式が実数解をもつための条件は D≧0 であるから 26′型であるから、解答 D = b²² 4 =b2-ac を称 FG=x とすると,0<F m+7≥0 0<x<20 よって m≥-7 ゆえに -7≦m<2,2<m m≠2かつm≧ また, DF=BF = CG (2) [1] m+1=0 すなわち m = -1 のとき -4x-7=0 2DF=BC-FG -7 よって、ただ1つの実数解 x=- 7 をもつ。 よって DF= 20-x 2 4 m=-1 [2] m≠-1 のとき よって 方程式は2次方程式で, 判別式をDとすると 2次方程式がただ1つの実数解をもつための条件は D=lであるから これを解いて m=-2,3 -m²+m+6=0 (m+2)(m-3)=0 これらは mキー1 を満たす。 以上から、求めるの値は m=-2,-1, 3 E-S を代入 長方形 DFGE の面積は ←判別式が使えるのは 20-x ゆえに x= 22=(m-12-(m+1)(2m-5)=-m²+m+6 2次方程式のとき。 ← 2次方程式が重 つ場合である。 整理すると これを解いて x²- x= ここで, 02√158 10-8<10-2 よって、この解はい したがって FG=

解決済み 回答数: 1