学年

質問の種類

数学 高校生

x.yを整数とすると、nがマイナスになってnが自然数であるという条件を満たさなくなりませんか? x.yは自然数とした方がよくないですかね? 解説よろしくお願いします!

216 基本例題 128 1次不定方程式の整数解の利用 12で割ると余り, 7で割ると4余る3桁の自然数のうち最大の数を求めよ。 基本127 CHART & SOLUTION 1次不定方程式の整数解の利用 条件から ax+by=cの形に変形 条件を満たす自然数は, 整数 x, y を用いて, 12x+1, 7y+4と2通りに表される。 そこで、 まず方程式 12x+1=7y+4 の整数解を求め、 それから題意の自然数を求める。 答 求める自然数をnとすると, n は x,yを整数として,次のよ うに表される。 n=12x+1, n=7y+4 よって 12x+1=7y+4 すなわち 12x-7y=3 x=3, y=5は, 12x-7y=1 の整数解の1つであるから 12・3-7.5=1 両辺に3を掛けると 12.9-7·15=3 ①②から 12(x-9)-7(y-15)=0 すなわち 12(x-9)=7(y-15) 12と7は互いに素であるから, ③を満たす整数xは x-9=7k すなわち x = 7k+9 (kは整数) ****** ****** と表される。 n=12x+1=12(7k+9)+1=84k+109 したがって 84k+109が3桁で最大となるのは, 84k + 109999 を満た すんが最大のときであり, その値は k=10 このとき n=84・10+109=949 RACTICE 128 11で割ると余り、5で割る 上の解答では, 12x-7y=1 の整数解の1つを求め それから③を導いて解いた。 しかし、例えば x2, y=3 が①の整数解の1つで あることに気がつけば、これを用いて解いてもよい。 本間のように,x,yの係数が比較的小さいときは,整 数解の1つを直接見つけて解いてしまった方が早い場 合もある。 αを6で割った商をQ, 余りをrとすると a=bq+r ◆まず、①の右辺を1とし た方程式 12x-7y=1 の整数解を求める。 このときy=12k+15 x,yの一方が定まれば nも決まる。 84k + 109≦999 から 999-109 ks. 84 = 10.5...... 12・27・3=3 と①から 12(x-2)-7(y-3)=0

解決済み 回答数: 1
数学 高校生

別解の解き方でこのように解いたのですが、kの値が6こ出てきてしまいます。33を代入した解き方で答えを出す方法を教えてください。お願いします

124 1次不定方程式の自然数解 基本例題 等式2x+3y=33 を満たす自然数x,yの組は xが2桁で最小である組は (x,y)=(イコウ[ BETAL CHART O SOLUTION 方程式の自然数解 不等式で範囲を絞り込む 「x, y が自然数」すなわち x1,y≧1 (あるいは x>0,y>0)という条件を利 用して、最初から x,yの値の範囲を絞り込むとよい。 解答 「2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ① において、y≧1 であるから 11-y≦10 2x≦3.10=30 更に, x≧1 であるから 1≤x≤15 ②③から x=3,6,9,12,15 ゆえに,等式を満たす自然数x,yの組は ア5組 それらのうち xが2桁で最小である組は 別解 x=0,y=11 は, 2x+3y=33 であるから ①②から すなわち 別解 基本例題 122 と同様にして方程式 2x+3y=33 の整数解を求めた後で,x, by が自然数になるように絞り込んでもよい。 10でもでもダメ!! 2.0+3・11=33 2x+3(y-11)=0 2x=-3(y-11) と表される。 x≧1,y≧1 であるから 1 3 4041 2と3は互いに素であるから, ① のすべての整数解は x=3k,y=-2k + 11 (k は整数) |組ある。 それらのうち である。 [福岡工大] るこからは分かっているから ることを入れて大を求める!! (2) (x,y)=(112,3) ① の整数解の1つ 3k≧1, -2k+11≧1 ≤k≤5 kは整数であるから ゆえに, ① を満たす自然数x,yの組は75組 k=1,2,3,4,5 xが2桁で最小となるのはk=4 のときであり, このときの組は (x,y)=('12,3) 基本 122 3110 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 ◆それぞれのxに対して yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 ←-2k-10 から k≤5 不等号の向きに注意。 ◆xが2桁のとき x=3k≧10 429 4 15 ユークリッドの互除法

解決済み 回答数: 1
数学 高校生

解答が違いました。なぜでしょうか? 基本例題129です。青チャートです。

2) 76²421 21 12 + 11 = 1 21 k = 10 OR。また、R-5m-2エリー 0≤ 5m-2- R = -21 2² これを満たす整数は、 47 // EM IN 満たす整数は、 719+32g=3 712-3-32なま 71% = 3 (mad 32) 11 F/v. 32X = 0 (mad 32). 0 © × 2 = 72 = 3 (mad 3 2 ) 111 (3) 37 x 4 = 4x = -12 (mad 32) 1² (4 ⑤で、⑤ No. mなので、M=1で最小値=74 ill e) *¹. 91 Date 144 = -3x = 15 (mad 32) KE/²1² X = 32k +5 Taaz!" 71.32k 355-3:32g ==71-321 +352 = 327 + g = -71 k-11 Tanz" 求める整数は、x=32k+5、y=-71R-1(実は整数) A = 5 (mad 32) 11. (3) 73x-56g=ら…ⓐⓓとする。 ⑩:734-5=56gとすると、73X=5(mad56)…①で、 56α = 0 (mad 56 ) cu Q FY₁ 21 (5m-2) + ₁ 74 - 0) = 17x = 5 (mad 56 ) "1") z". -3x③ : 2-3x 5% = -15 (mad 50) 2²-5 × 563 314 722"- 友支整数とし、X=56-3。よって、ⓐより、y=73-4だから、求める整数は、 X=560-3.y=734-4(友は整数) 期間 れこ」を満たす整数について考える。3.7で割ったときの間を各々a.bとすると. N< ZA+ 211¹₂ N = 76+4 + DIY 21 (₁5m-2) +11 (05m-42+11 3a+2=7b+4<3a-7b=2.③であり、③の特殊解は、a-3,bンなので 3(a-3)=7(b-1)で、3X7は互いに素数なので、友を整数とし A-3 = 7k₁b-1= 3k³²² α= 7k+3₁ b = 3k+1² Tjaz". N= 2/k+|| CEID. また、れなで割ったときの高効とすると、9:58+3であり、 -42t|1=31 21k+11=5ℓ+3211-5ℓ=-750-21R=7.④.④の特殊解 =-7R-2なので、5((+7)21(+2)で、5と21は互いに素なので、数とし J 8 l+ 7 = 2/m₂k+ 2 = 5m =) - l = 21m-7₂ k = 5m-2-7¹) ₁ N² 105m -31%%"

解決済み 回答数: 1
数学 高校生

下から3行目のn=k+1 はどこから出てきたのかわかりません。教えていただけると助かります!

例例題 274 2つの等差数列の共通の 初項1,公差2の等差数列{an} と初項 1, 公差3の等差数列{bn}がある。 (1) 数列{an}と{bn}の一般項をそれぞれ求めよ。 思考プロセス (2) 数列{an} と {bn}に共通して含まれる項を小さい方から順に並べてで きる数列{cn}の一般項を求めよ。 3176 H (2) 未知のものを文字でおく {an}の第1項と{bn}の第m項が等しいとする。 ⇒21-1=3m-2 (L,mは自然数)す 1 (1) 数列 {an}の一般項は an=1+(n-1) 2=2n-1 >21-3m=-1の自然数解 BAINS 1次不定方程式 Action» 等差数列{an},{bn}の共通項は,a=bm として不定方程式を解け 脂質問を募ることの門商法 数列{bn}の一般項は a S bn=1+(n-1)・3=3n-2 (★★) 309 (2) {an}の第1項と{bn}の第m項が等しいとすると, 21-1=3m-2より 21-3m=-1 l=1,m=1 はこれを満たすから 40 2(1-1)=3(m-1) ・① 2と3は互いに素であるから, 1-1は3の倍数である。 よって, l1 = 3k(kは整数)とおくと l=3k+1 これを①に代入して整理すると m=2k+1 lm は自然数より k = 0, 1, 2, nは自然数より,n=k+1 とおくと k=n-1 ゆえに, l=3n-2 (n=1,2,3, ・・・) であるから Cn = d3n-2= -2=2(3n-2)-1=6n-5 〔別解) A IS 2つの等差数列の項を書き並べると {an}: 1, 3,5,7, 9, 11, 13,15, 17, 19, です SSS - ST {6}: 1,4,7, 10, 13, 16, 19, よって、求める数列{cm} は,初項1の等差数列となる。 公差は2つの数列の公差2,3の最小公倍数6である から Cn=1+(n-1)・6=6n-5 一 a=bm 165303 21-3m=-1 -) 2・1-3・1 = -1 2(1-1)-3(m-1)=0 [*+-+*+/ 3k+1≧1 より ≧0 【2k+1≧1 より ≧0 AREN ■nとんの対応は,不定 方程式 ① を解くときに用 整数1, m の組によっ 変わる。 具体的に考える {an},{bn} を具体的に書 き出して、規則性を見つ ける {cm}:1,7,13, 19, EVAYER 3ªð

回答募集中 回答数: 0