学年

質問の種類

地学 高校生

地学基礎の問題です! 問2の向きの考え方を わかりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️

重要例題 2 ホットスポット 5分 太平洋などの海洋底には、 右の図に示すように, 火山島とそ れから直線状に延びる海山の列が見られることがある。 これは, 5000万年前 +z マントル中にほぼ固定されたマグマの供給源が海洋プレートA。 | 1000km +| プレートA 4000万年前 上に火山をつくり プレートAがマグマの供給源の上を動くた こんせき めに,その痕跡が海山の列として残ったものである 問1 上の文中の下線部のようなマグマの供給源の場所を何と よぶか。 最も適当なものを,次の①~④のうちから一つ選べ。 ① チムニー ② 溶岩ドーム ③カルデラ ④ ホットスポット 問2/図に示す海山の配列は, マグマの供給源に対するプレート O 0 〇〇 -2000km a 現在 プレートA上の火山島 (○印)と海山(○印) 火山島 a, 海山b.cの生成年代と,a-b間, b-c間の距離を図に示してある。 Aの運動が, 4000万年前を境に変化したことを示している。 このとき生じた運動 (向きと速さ)の 変化として最も適当なものを,次の①~④のうちから一つ選べ。 ① 北西向き 5cm/年から北向き10cm/年 ② 北向き 10cm/年から北西向き 5cm/年 南東向き 5cm/年から南向き10cm/年 ④ 南向き 10cm/年から南東向き 5cm/年 [2005 本試〕

解決済み 回答数: 1
地学 高校生

地学基礎の問題です! 問2の問題で単位をmmやkmは どのように考えられているのかを教えてほしいです!! よろしくお願いします🙇🏻‍♀️

重要演習 重要例題 1 地球の大きさ 5分 紀元前3世紀,エラトステネスは,ナイル河口のアレキサン 北極 ドリアで夏至の日の太陽の南中高度を測定して、太陽が天頂よ り 7.2° 南に傾いて南中することを知った(図)。 また, アレキサ ンドリアから5000 スタジア*南にあるシエネ (現在のアスワン) では、夏至の日に太陽が真上を通り, 正午には深い井戸の底ま で日がさすことが当時広く知られていた。 これらの事実から, 彼は地球一周の長さを 7.2% アレキサンドリア 太陽光線 シエネ 赤道 7.2° ] スタジアであると計算した。 *スタジアはエラトステネスの時代の距離の単位 問1 上の文章中の空欄に入れる数値として最も適当なものを,次の①~④のうちから一つ選べ。 ① 22000 ②25000 ③ 40000 ④ 250000 問2 一周4m(直径約1.3m)の地球儀を考える。この縮尺では世界で最も高いエベレスト山(チョ モランマ山)の高さ (8848m)はどれくらいになるか。 最も適当なものを,次の①~④のうちから 一つ選べ。 ただし, 地球一周は約40000kmである。 ① 0.9mm ② 9mm ③ 90mm [2000 本改] ④ 900mm が成りたつ。 問2 地球儀の山の高さをx[mm], 地球儀の円周を [mm], 山の高さをん [km], 地球の円周をL [km] とす h ると x:l=h: L となるから x = 1× L 考え方 問1 地球を完全な球と考えると, 同一経線 上の2地点間の緯度差が 0 [℃], 距離がdのとき,地球 の円周をLとすると d:L=0:360° これを変形してL=d× 360° 緯度差は,太陽の南中高度の差 7.2° に等しいから 360° L = 5000 x = 7.2° 250000 スタジア l=4m=4000mm,h=8848m≒9km, L=40000km より x = 4000x = 0.9mm 40000 解答 問1④ 問2 ①

解決済み 回答数: 1
数学 高校生

数学の三角関数の問題です。添付の問題の(1)の解説で、x'=rcos(α+3/π)となっている部分が、x'=rcos(3/π-α)のように思えてしまって、なぜカッコの中がα+3/πとなるのかがわかりません。基本的な考え方が身に付いていないのかもしれず、その前提で教えていただ... 続きを読む

246 基本 例題 153点の回転 π 3 点P(3, 1), 点A(1,4) を中心としてだけ回転させた点を Qとする。 (1)点が原点に移るような平行移動により、点Pが点P'に移るとする。 •だけ回転させた点 Q' の座標を求めよ。 /p.2.41 基本事 25 基本事項 12倍 点P'を原点Oを中心として π 3 (2) 点Qの座標を求めよ。 指針 点P(x0,y) を, 原点Oを中心としてのだけ回転させた点を Q(x,y) とする。 y OP=rとし、 動径 OP と x 軸の正の向きとのなす角をαと すると Xorcosa, yo-rina OQで, 径 OQx軸の正の向きとのなす角を考える と、加法定理により x=rcos(a+0)=rcosacos0-rsinasin( Xo Cos O-yosin 0 Q(rcos(a+0). ysin(a +8) P (rcosa, 2 半角 33倍 rina) 0 % 解 12倍 三角 y=rsin(α+0)=rsinacos0+rcosasin 0 た Yo cos 0+ x sin ( sin( この問題では,回転の中心が原点ではないから, 上のことを直接使うわけにはいかな い。 3点P, A, Q を 回転の中心である点が原点に移るように平行移動して考える。 (1)点Aが原点 0 に移るような平行移動により, 点Pは点 解答 P'(2,-3) に移る。次に,点Q′'の座標を (x, y) とする。 また, OP'=rとし, 動径 OP' とx軸の正の向きとのなす 角を とすると 2=rcosa, -3=rsina x軸方向に-1, y軸 方向に-4だけ平行移 動する。 COS また 更 半の 2 練習 ③ 153 よって x=rcos(a+1)= π 3 =r rcosa cos -rsinasin 3 TC rを計算する必要はな 3 √32+3√3 い。 -2018-(-3)2+3 / 2 y=rsin(u+/5) - =rsinacos 3 πC cos/trcosasin y A 3 =3/12/+2.13 2/3-3 したがって, 点 Q' の座標は 2 2+3/3 3√3 2√3-3) 2 (2)Q'は,原点が点 Aに移るような平行移動によって, 点Qに移るから,点Qの座標は (2+3√3+1.2/8-3+1)から(4+3/82/3+5) 1/20 P/ PQ 13 πだけ回転させた点 Qの座標を求めよ。 (2)点P(3,-1), 点A(-1, 2) を中心として 標を求めよ。 TC 3 だけ回転させた点Qの座 p.254 EX93 (2)

未解決 回答数: 1