学年

質問の種類

数学 高校生

(2)の場合分けの3<=x<5でイコールがつくのは何故か教えてください🙏

00 例題 基本の 158 三角形の成立条件、鈍角三角形となるための条件 [AB=2,BC=x, CA =3である △ABC がある。 1xのとりうる値の範囲を求めよ。 (2) ABC が鈍角三角形であるとき, xの値の範囲を求めよ。 (1) 000 [類 関東学院大 ] P.248 基本事項 3.4 重要 159 \ 三角形の成立条件|b-c| <a<b+c を利用する。 ここでは, 13-2|<x<3+2の形で使うと計算が簡単になる。 角となる場合を考えればよい (三角形の辺と角の大小関係より、最大の辺を考える (2) 鈍角三角形において,最大の角以外の角はすべて鋭角であるから,最大の角が鈍 ことになる)。 そこで、最大辺の長さが3かxかで場合分けをする。 例えばCA(=3) が最大辺とすると となりが導かれる。これに6=3,c=2, a=x を代入して,xの2次不 259 Bが鈍角 COSB<O⇔ c²+a²-b² 2ca <0 c²+a²-b²<0 等式が得られる。 4 B (1)三角形の成立条件から 3-2<x<3+2 <|x-3|<2<x+3または 1 1 <x< 5 よって どの辺が最大辺になるかで場合分けをして考える。 [1] 1 <x<3のとき,最大辺の長さは3であるから,そ の対角が90°より大きいとき鈍角三角形になる。 32>22+x2 x2-5<0 |2-x|<3<2+xを解い てxの値の範囲を求め てもよいが、面倒。 (1)から 1<x [1] 最大辺がCA=3 3 る。 ゆえに すなわち よって (x+√5)(x-√5) <0 ゆえに -√5<x<√5 C B>90⇔AC> AB+BC C 1<x<3との共通範囲は 1<x<√5 で [2] 3≦x<5のとき, 最大辺の長さはxであるから,そ (1) から x<5 の対角が90° より大きいとき鈍角三角形になる。 [2] 最大辺がBC=x x2>22+32 2. 3 C すなわち x²-130 よって ゆえに (x+√13)(x-√13)>0 x<-√13√13 <x B X A>90BC2>AB²+AC² 3≦x<5 との共通範囲は 13 <x<5 [1], [2] を合わせて 1<x<√5/13 <x<5 鋭角三角形である条件を求める際にも、最大の角に着目 し、最大の角が鋭角となる場合を考えればよい。 |AB=x, BC=x-3, CA=x+3である △ABC がある。 のとりうる値の範囲を求めよ。 (2) ABC が鋭角三角形であるとき、xの値の範囲を求めよ。 [類 久留米大] p.263 EX113

解決済み 回答数: 1
数学 高校生

この問題の場合分けの「1<x<4」、「4≦x<7」の4がどこから出てきたか分かりません!教えてください

三角形の成立条件 例題124 3辺の長さが3,4,xである三角形について,次の問いに答えよ. xのとり得る値の範囲を求めよ. (2)この三角形が鋭角三角形となるようなxの値の範囲を求めよ. につい3 考え方 (1) たとえば, 3辺の長さが3, 4,9では、 解答 Focus x+3>4 x+4>3 & USH 9 三角形ができるためには, a+b> c が成り立つ必要がある. (2) 鋭角三角形となるのは,最大の角が鋭角のときである. 最長となる辺の対角が最大となるので, 4とxを比較する. (辺と角の大小関係は p.42 . 425 参照) POS (1) 3辺の長さが3,4,xの三角形が存在する条件は, 3+4>x これより、1<x (2)(i) 1<x<4 のとき,最大の角は長さが4の辺の対 角である. それをaとすると, α <90°となるため には, cos a= x2+32-42 2.x3 cos B= Aが直角 Aが鈍角 ->0 x<-√7, √7<x 3242x2 2.3.4 よって, (i), (ii) より, 2 正弦定理 4 これより, >> √7 <x<4 15 これと 1<x<4 より (ii) 4≦x<7のとき, 最大の角は長さがxの辺の対 角である. それをβとすると, β <90°となるため には, これより, -5<x<5 これと 4≦x<7 より, x2+32-420 で三角形ができない. ->0. 32+4x²0 √7<x<5 LAST U 295305 4≦x<5 **** cos A=0b²+c²=a² cos A<0b²+c²<a² a 1=18 C b a,b,c を3辺の長 さとするなら a > 0, が必要 >0c0 であるはずだが,こ れらは,三角形の成 立条件の3つの式か ら導かれる. (次ペ レージの Column 参照) 最大角をみるために は、 場合分けが必要 一般に SEOULUHUSUS# a+b>c a,b,c を3辺の長さと b+c>aa -bl<c<a+b する三角形が成立する条件 E c+a>b Abcos A>0 ⇒ b²+c²>a² Aが鋭角 ⇒b²+c²a² を用いてもよい. (2)この三角形が鈍角三角形となるようなxの値の範囲を求めよ. Oo WARE 練習 3辺の長さがx, x+1, x+2 である三角形について,次の問いに答えよ. 124 (1) とり得る値の範囲を求めよ. *** 第4章 →p.244 18

解決済み 回答数: 1