学年

質問の種類

数学 高校生

軍数列を解く時のコツってなんですか?何からやればいいのか分からないです

1から順に並べた自然数を 12, 34, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 1516, のように,第n群 (n=1, 2, ...) が2"-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ. (2)第n群に含まれる数の総和を求めよ. (3)3000 は第何群の何番目にあるか. 精講 ある規則のある数列に区切りを入れてカタマリを作ってできる群数 列を考えるときは, 「もとの数列で、はじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します. 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて 各群の最後の数が基 (1+2+..+2"-2) 項目 . 準 第 (n-1) 群 2-1-1- 第n 群 ***, 3000, 2"-1 2-1 ここで,2''=2048, 22=4096 だから 2" <3000<212 ∴.n=12 よって, 第12群に含まれている。 第 (n+1) 群 このとき,第11群の最後の数は, 2"-1=2047 だから, 2n 注1.第12群に含まれているとき, 第12群の最初の数に着目すると 3000-2047=953 より, 3000は第12群の953番目にある. 3000-2048と計算しないといけません. 逆にひき算をすると答 がちがってしまいます。 注2 (3) 2行目の 2"-130002"は2" ' 3000≦2"-1 でも、 2-1-1<3000≦2"-1 でもよいのですが,(1)を利用すれば解答の形に なるでしょう。 注3.(1),(2)はnに具体的な数字を入れることによって検算が可能です。 ポイント すなわち, 2-1-1) 項目だからその数字は 2"-1-1 等比数列の和の公式 を用いて計算する よって,第n群の最初の数は (2-1-1)+1=2"-1 (2)(1)より第n群に含まれる数は 初項 2-1 公差 1, 項数 2"-1の等差数列. よって, 求める総和は 11.2"-1{2.2" '+ (2"-1-1)・1} 2 =2"-2(2・2"-'+2"-1-1)=2"(321) 解) 2行目は初項 27-1 主 演習問題 131 もとの数列に規則のある群数列は, I. 第n群に含まれる頃の数を用意し Ⅱ. 各群の最後の数に着目し Ⅲ. はじめから数えて何項目か と考える 1から順に並べた自然数を 1|2, 34, 5, 6|7, 8, 9, 10|11, 12, 13, 14, 15/16,

回答募集中 回答数: 0
数学 高校生

ここの赤い丸の左辺と右辺が成り立つのはどうしてですか?教えて頂きたいです。

·(3n-2)x" 1-x すなわち (1-x)S= 1+2x-(3n+1)x"+(3n-2)x +1 1-x したがって S= 1+2x-(3n+1)x"+(3n-2)x+1 (1-x)2 第 1/12m(n+1)項 (2)第1群から第n群までの項数は 1 man(n+1)であるから,第100項か るとすると (n-1)n<100(n+1 68 (1) 第群は2"-1個の自然数を含むから,第 よって (n-1)n <200≦n(n+ n群の最初の自然数は, n≧2のとき (1+2+ ....... +2"-2)+1= 2"-1-1 +1 2-1 =2"-1 13.14182, 14・15=210 である す自然数nは n=14 第1群から第13群までの項数は ・13・14=91 2 これはn=1のときも成り立つ。 したがって、 第2群の最初の自然数は 2"-1 (2)500が第n 群にあるとすると 2"-1500<2" 2°=256,2°=512であるから, ① を満たす自然 n=9 数nは 500 群の第項であるとすると m=245 29-1+(m-1)=500から よって 第9群の第245項 (3) 第群にある自然数の列は初項が2"-1 末項 69 59 2-1 項数が2"-1の等差数列である。 よって, その和は (21.2"-2"-1+2"-1)=2"-"(3.2"-1-1) ■指針 繰り返しの規則性がある数列 ゆえに、 第 100項は第14群の10 の数である。 よって, 第100項は 92=81 (3) 第群にあるすべての自然数 12+2+......+n2. = n(n. したがって, 第13群までにある の和は 13 13 ½ kk + 1x(2k+1)= k=1 =1/2(1/2-13-14)2 +3.1/1.1 11 . ・13・14(13.14 +27- 繰り返しの切り替わりの場所に仕切りを 入れて, 群に分けてみる。 よって, 初項から第100頃ま 3185+(12+22+... =3185+ -9-10-1 (1) n2 が初めて現れるのは,第2群の末項で ある。 (2)第100項が第何群の第何かを求める。 この数列を、次のように第n群が個の数を含 むように分ける。 11, 41, 4, 91, 4, 9, 16 1. 4. 9, 16, 25 1, すなわち 11. 2213 22.3 12, 22, 32, 42| 70 分母が同じ分数を1つの うに分ける。 2 1 6'6 2 2 3 4'4 第1群から第群までの項 1+2+..

未解決 回答数: 1