学年

質問の種類

数学 高校生

黄チャートの数Iの例題45で、なんとなく意味は理解できた感じがするんですけど、同じことを自力で書こうとするには無理で、それってまだ自分が完璧には理解できていないとおもうので、背理法のコツとか、背理法をマスターする方法とか、この問題の解説的なものを教えて頂きたいです🙇‍♀️

基本 例題 45 √3 が無理数であることの証明 00000 命題 「n は整数とする。 n2 が3の倍数ならば, nは3の倍数である」 は真で ある。これを利用して、√3が無理数であることを証明せよ。 基本 44 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 √3 が無理数でない (有理数である) と仮定する。 このとき,√3=r(rは有理数)と仮 定して矛盾を導こうとすると,「√3=rの両辺を2乗して, 3=2」 となり,ここで先に進 めなくなってしまう。そこで,自然数 a, b を用いて√3 = (既約分数)と表されると仮 定して矛盾を導く。 解答 a √3 が無理数でないと仮定する。 このとき 3 はある有理数に等しいから, 1 以外に正の公約 数をもたない2つの自然数a, b を用いて、3= とされる。 ゆえに 両辺を2乗すると a=√36 a2=362 よって、2は3の倍数である。 050+ α2が3の倍数ならば, aも3の倍数であるから, kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって、62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 ← 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という(数学A参照)。 ←下線部分の命題は問題 文で与えられた真の命 題である。 なお、下線部 分の命題が真であるこ との証明には対偶を利 使用する。 したがって√3 は無理数である。 INFORMATION ■に伝わります。 Eb.d 例題で真であるとした命題 「n2が3の倍数ならば, nは3の倍数である」 の逆も真で ある。 また, 命題 「n2 が偶数 奇数) ならば, nは偶数 (奇数) である」 および, この逆 も真である。 これらの命題が真であること, および逆も真であるという事実はよく使 われるので,覚えておこう。 PRACTICE 45Ⓡ 3 つまず 命題「n は整数とする。 n2 が7の倍数ならば, nは7の倍数である」 は真である。こ れを利用して√7 が無理数であることを証明せよ。 2 C 集

未解決 回答数: 0
数学 大学生・専門学校生・社会人

数学青チャ1A例題59から 赤枠部分について、なぜ正の公約数を持つと有理数でないといえるのでしょうか? また、それをなぜ分数の形にするのでしょうか?

あり ない ない 基本 例題 59 √7 が無理数であることの証明 00000 √7 は無理数であることを証明せよ。ただしnを自然数とするとき, nが7の 倍数ならば, nは7の倍数であることを用いてよいものとする。 [ 類 九州大 ] 指針 無理数であることを直接証明することは難しい。 そこで, 前ページの例題と同様 直接がだめなら間接で 背理法 基本 58 4 解答 に従い 「無理数である」 = 「有理数でない」を,背理法で証明する。 つまり、√7 が有理数(すなわち 既約分数で表される)と仮定して矛盾を導く。・・・・・・・・・ [補足] 2つの自然数α, bが1以外に公約数をもたないとき, αとは互いに素である (数学 A 参照)といい, このときは既約分数である。 して る。 √7 が無理数でないと仮定すると, 1以外に正の公約数をもた ない自然数 α, b を用いて7 と表される。 a √7 は実数であり、無理 b このとき 両辺を2乗すると a=√76を用いて a2=762 ① でないと仮定しているか 有理数である。 この両辺を2乗すると よって, αは7の倍数であるから, a も 7の倍数である。 例題の「ただし書き」を いている。 ゆえに, cを自然数として, α = 7c と表される。 a2=49c2 ① ② から 762=49c2 すなわち 627c2d ② よって, 62 は7の倍数であるから, 6も7の倍数である。 ゆえに α ともは公約数7をもつ。 これも「ただし書き る。 これはaとbが1以外に公約数をもたないことに矛盾する。 したがって√7 は無理数である。

解決済み 回答数: 1