学年

質問の種類

数学 高校生

17. 記述これでも問題ないですか??

36 FREL 基本例題 17 分数式の恒等式 a/00000 次の等式がxについての恒等式となるように,定数a,b,cの値を定めよ。 -2x2+6 has b c (x+1)(x-1)2x+1 x-1+(x-1)^2 = 指針▷分数式でも,分母を0とするxの値 (本問では−1, 1)を除いて,すべてのxについて成 り立つのが恒等式である。 与式の右辺を通分して整理すると -2x²+6 a(x-1)²-b(x+1)(x−1)+c(x+1) (x+1)(x-1) 2 (x+1)(x-1)2 両辺の分母が一致しているから, 分子も等しくなるように, 係数比較法または数値代入法 でα, b,cの値を定める。 このとき, 分母を払った 整式を考えるから, 分母を0にする値 x=-1,1も代入してよい (下の 検討 参照)。 TRIAHO 解答 両辺に(x+1)(x-1)2 を掛けて得られる等式 -2x2+6=a(x-1)2-6(x+1)(x-1)+c(x+1) もxについての恒等式である。 解答1. (右辺)=a(x2-2x+1)-6(x2-1)+cx+c =(a-b)x2+(-2a+c)x+a+b+c 2011 = OS=dA [S=08 よって 両辺の同じ次数の項の係数は等しいから a-b=-2, -2a+c=0, a+b+c=6 この連立方程式を解いて -2x2+6=(a-b)x2+(-2a+c)x+a+b+c a=1,b=3,c=2 解答 2.① の両辺にx=-1, 0, 1 を代入すると,それぞれ 4=4a, 6=a+b+c, 4=2c この連立方程式を解いて 基本 15 16 a=1,b=3,c=2 このとき, ① の両辺は2次以下の整式であり,異なる3個の x の値に対して成り立つから,①はxについての恒等式であ る。 したがって a=1, b=3, c=2 (分母) ¥0 から (x+1)(x−1)²=0 係数比較法による解答。 「両辺の係数を比較して」 と書いてもよい。 MEG 12-20 数値代入法による解答。 求めたa,b,cの値を① の右辺に代入し、 展開した ものが ① の左辺と一致す ることを確かめてもよい。 検討 分母を0にする値の代入 分母を0にする値x=-1, 1 を代入してよいかどうかが気になるところであるが, これは問題 ない。なぜなら、値を代入した式①は, x=-1, 1でも成り立つ整式の等式だからである。 すなわち、xにどんな値を代入してもよい。 そして,この等式が恒等式となるように係数を定めれば, 両辺を (x+1)(x-1)で割って る分数式も恒等式である。 ただし, これは x = -1, 1 を除いて成り立つ

回答募集中 回答数: 0
化学 高校生

【1】青い→の所からよってまで計算の過程を教えてください。 【2】C/CO=0,50/2,0ではないのですか? また、なぜ2,0×1/2をしているのですか?

入試攻略への必須問題 ある化合物の分解を考える。初濃度 Co〔mol/L〕の化合物において、時 間』〔min〕後における濃度C[mol/L] は, C=Cpe="(kは反応速度定数) で表される関係式にしたがった。ここで (無理数) である。 は正の定数 なお、分解反応中、温度は一定とする。 (1) 化合物の初濃度が1.0mol/Lのとき、1分後に 0.50mol/L に減少し たとする。初濃度が 2.0mol/L の場合、1分後の濃度 〔mol/L] を数値 で求め. 有効数字2桁で記せ。 (2) 化合物の濃度が 初濃度Cの半分になるのに必要な時間 〔min〕 を数 式で記せ。解答の数式には,必要に応じて Co. k を含んでよい。ただし、 log2=0.69 とする (岡山大) 解説 Game", c=1/12 となるとき、丁とすると、 11/27=e²kT 両辺の自然対数をとると. -020 1027 0.69 (2) の解答 k k Tは一定であり,これが半減期です。 20.50 1 Co 1.0 2 ます。 となりますね。 なところいっきになるの? 2.0×12=1.0 [mol/L] (1の解答 (1) 1.0mol/L Co=2.0 [mol/L] の場合も T=1 [min] で一定ですから, 1分後には PSD z magy (2) 0.69 k まいた C=C₂e² L となるのが,t=1 [min] なので, T=1 [min] とわかり 男の海とかとい 物になったときの、 final ・ニー exe Co=2x 低 Ca Yr

回答募集中 回答数: 0
数学 高校生

(2)の値は何かの数式の証明であったり、数学的に重要な値ですか?

312 重要 例 例題 187 面積 | 曲線 C:y=e 上の点P(t, e') (t>1) における接線をl とする。 Cとy軸の共 有点をA, lとx軸の交点をQとする。 原点を0とし, △AOQ の面積をS(t) とする。 Q を通りy軸に平行な直線, y 軸, C およびlで囲まれた図形の面積を T (t) とする。 (1) S(t), T(t) をtで表せ。 解答 T(t) S(t) を利用する。 計まず、グラフをかいて、積分区間やCとの位置関係を確認する。t>1に注意。 (1) A(0,1)である。また, lの方程式はy-e=el(x-t) (ex)'=ex ← この方程式において, y=0 とすれば, 点Qのx座標がわかる。 (2) まず. を求める。 そして、 極限値を求める際は lim- 0 XC (2) lim (1) 点Aの座標は (0, 1) y=ex より y = ex であるから, 接線lの方程式は y-et=et(x-t) すなわちy=e'x+(1-t)et. ① において, y=0 とすると よって x=t-1 ゆえに、点Qの座標は したがって ゆえに T(t) → 1+0 S(t) et-1-1 s(t)=1/2 · (t−1)·1=-² t-1 2 またT(t)='"^'[ex_{e'x+(1-t)e'}}dx lim →1+0 t-1 -[²-x² + (1-1)e²x ¹ = ²(t-1)²+e²-¹-1 2 T(t) et (2) 756) = -²2₁ [ {(t−1)² + e²-¹-1}=e²(t-1)+ S(t) t-112 ここで, t-1=s とおくと, t → 1+0 のとき よって lim T(t) 1+1+0S(t) 0={x+(1-t)}et (t-1, 0) t-1>0 (1) e³–1 を求めよ。 =lim 8 +0 S ·=0+2・1=2 -=1 (2) lim 2(ef-1-1) t-1 s → +0 練習 g(x) = sin' x とし, 00<πとする。 xの2次関数y=h(x)のグラフは原点を調品 ③ 187 としん(0)=g(0) を満たすとする。 このとき, 曲線 y=g(x) (0≦x≦)と直線 x=0およびx軸で囲まれた図形の面積をG(0) とする。 また, 曲線 y=h(x)とい 線 x = 0 および x軸で囲まれた図形の面積をH(0) とする。 (1) (0) H (0) を求めよ。 G(0) を求めよ 0+0 H(0) e*-1 1 [類 東京電機大] ・基本 81, 177 = 1 (p.121 参照) X-0 T(t) /t-1 1Q 積分区間においてC は常により上にあ る。 lime(t-1) 20 解答 (3) (2) S' 0<a< 範囲で である 右のよう よって, 習 f(x)=ex- 188 (1) t は実数 で囲まれた

回答募集中 回答数: 0