学年

質問の種類

数学 高校生

写真の問題の赤線部についてですが、なぜn≧1と書く必要があるのでしょうか? その上の行でΣとCをすでに使っていますが、ΣとCのnの部分は定義から、n≧1だから、赤線部の前にn≧1という条件はすでに考慮してるのではないのでしょうか?解説おねがいします。

基礎問 P 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して,2"> n を示せ. AOAO k-1 (2) 数列の和 S. = 2 (1) anで表せ△〇〇〇 k=1 (3) lim Sm を求めよ. △△△△ n→∞ |精講 (1) 考え方は2つあります。 I. (整数)” を整式につなげたいとき, 2項定理を考えます. PROCE (数学ⅡI・B4 ⅡI. 自然数に関する命題の証明は帰納法 (数学ⅡI・B 136 Fet (2) Σ計算では重要なタイプです. (数学ⅡB 120 S=Σ(kの1次式) k+c (r≠1) は S-S を計算します. (3) 極限が直接求めにくいとき, 「はさみうちの原理」という考え方を用います. bn≦an≦en のとき limb=limcn = α ならば liman=α n→ 00 n→∞ n→∞ この考え方を使う問題は,ほとんどの場合,設問の文章にある特徴がありま す. (ポイント) どういう意味? 解答 (1) (解I)(2項定理を使って示す方法) n (x+1)=2nCkck に x=1 を代入すると k=0 2"=nCo+nC1+nC2+..+nCn ¹) n=1 F²³5, 2²nCo+nC₁=1+n>newhere 2">n ( 解ⅡI) (数学的帰納法を使って示す方法 ) 2"> n (i) n=1のとき 左辺=2,右辺=1 だから, ①は成りたつ

回答募集中 回答数: 0
数学 高校生

数列 al=bm…以降の解き方なのですが、l,mの整数解が違うからか答えが全然同じになりませんでした。 模範解答の整数解しか条件を満たさないのでしょうか? 解説お願いします。

Example 44 ***** 1つの実数がある。を初頭… を公差とする等差数列をを を公差とする等差数列を(b)とする。 いま数列 (17²) の第2項がα-8で あり、数列(b)の第4項がb-14 であるとする。このとき、 の値は カッターである。また、このとき2つの数列 (an) と [6] 共通 して現れる数を小さい順に並べて新しい等差数列{cm) を作ると,{cm) は公差はである。またAcadの初項から第n項まで の式で表すとである。 解答 α=p+(n-1)g、bm=g+(n-1)p 8 から p+q=8 3p+g=14 ****** 共通な項を α = bm とすると b=14 から ① ② を解いて p=73.g=15 ① - (9 α=3+5(n-1)=5n-2 b²=5+3(n-1)=3n+2 5.(-1)-2=3· (−3)+2 ③ ④ から 5と3は互いに素であるから l=k-1(k≧1) 51-2=3m+2 4 5(+1)=3(m+3) ****** 1+1=3k(kは整数) ■頃までの和は、 [類 13 関西学院大] key α = bm を満たす を求める して Cn=α3n-i=5(3n-1)-2=15n-7 key 等差数列の和 ゆえに、数列{cm} は初項 "8, 公差 -15 の等差数列である。 答 等差数列{an}の初項か よって、数列{C}の初項から第n項までの和は ら第n項までの和 S は \n(c₁+c₂)=n(8+(15n-7)) = n(15n+1) S₁= n(a₁ + a) Sn²

回答募集中 回答数: 0