学年

質問の種類

数学 高校生

(2)がわかりません 解説お願いします🙇‍♀️

446 基本 例画 24 数列の和と一般項, 部分数列 00000 |初項から第n項までの和Sn が 2n²-nとなる数列{an}について (1) 一般項 am を求めよ。 指針 ((2) 和α1+α+α+....+α2n-1 を求めよ。 (1)初項から第n項までの和S”と一般項αの関係は p.439 基本事項 4 基本 48 n≧2のとき Sm=a+az+. +an-1+an - Sn-i=a+az+. +an-1 Sn-Sn-1= an よって an=Sn-Sn-1 n=1のとき a1=Si 和Sがnの式で表された数列については,この公式を利用して一般項 αn を求める。 (2) 数列の和 ①まず一般項(第ん項) をんの式で表す 第1項 第2項,第3項, ......,第k項 a1, a3, a5, a2k-1 であるから, am に n=2k-1 を代入して第k項の式を求める なお,数列 a1, 3, 5, an-1 のように, 数列{a}からいくつかの項を取り除 いてできる数列を,{a} の部分数列という。 200 00 06816P 68 SA aɛ 08 AS 815 12 (6) 23 a=S-S1= (2n-n){2(n-1)-(n-1)}+8 S=2n²nであるから Sn1=2(n-1)2-(n-1) (1) n≧2のとき 解答 =4n-3 ・・・・・ ① また α=S=2.12-1=1 +s) +81 +2 ( 初項は特別扱い ことに注意 ここで, ① において n=1 とすると よって, n=1のときにも①は成り立つ。 したがって an=4n-3 1=4・1-3=1 ann≧1で1つの式に 表される。 (2) (1)より, a2k-1=4(2k-1)-3=8k-7であるから n nst) 0+s から aux-はan=4n-3にお 「いてぇに2k-1を代入。 a+as+as+…+azn-1=242k-1=2(8k-7) 3- k=1 k=1 =8.1m(n+1)-7n (Fn(4n-3) 11+(1-10) x nas-S [A Zk, 1 の公式を利用。 に浸 部めく 基4 数列Ⅰ・ 指針

解決済み 回答数: 1
数学 高校生

これの(2)のr≠1の時のRの因数分解の道筋教えてください🙇‍♀️

430 基本 13 等比数列の和 (1) (1)等比数列 α 302 90°, し, 0 とする。 10000 ・の初項から第n項までの和Sを求めよ。 ただ (2) 初項 5. 公比の等比数列の第2項から第4項までの和が30であると 実数の値を求めよ。 指針等比数列の和 [1] キ1のとき S= a(-1) r-1 →r1, r=1で, 公式 [1], [2] を使い分ける。 p.427 基本事項 重要 [2] r=1のとき (1)初項α、公比3 の等比数列の和→3a1, 3a=1で使い分ける。 (2)第2項5r を初項とみて, 和をの式で表す。 CHART 等比数列の和 キ1かr=1に注意 (1)初項 α,公比 3a, 項数nの等比数列の和であるから < (公比) = 3a2 a{(3a)"-1} 1 解答 [1] 341 すなわちαキー 3 のとき Sn= [2] 3a=1 すなわち a= 1/12 のとき Sn=na= -n 3a-1 1 3 =3a 公比3aが1のとき a でないときで場合分け 基本 初項から ついて、 初 針 (2)初項 5,公比rの等比数列で,第2項から第4項まで 初項5,公比から の和は、初項 5, 公比r, 項数3の等比数列の和と考え られる。 もとの数列の第2項から第4項までの和が-30 であるから [1] r≠1 のとき 51(3-1)=-30 r-1 整理して r(r2+r+1)=-6 すなわち +re+r+6=0 因数分解して (r+2)(re-r+3)=0 rは実数であるから r=-2 [2] r=1のとき 第2項から第4項までの和は3.5=15 となり,不適。 r=-2 以上から 注意 等比数列について, 一般項と和の公式のの指数は異なる。 a2=5r, as=5r2, =53 よって,和を 5 +52 +53 としても よい。 473-1 =(-1)(r2+r+1) <1 11 6-2 -22-6 1-13 0 x²-r+3=0は実数解 もたない。 a2=α3=a=5 一般項 an=ar 和 Sn= a(r”-1) r-1 rの指数はn の指数はn-1

解決済み 回答数: 1
数学 高校生

ここって7じゃないんですか?! この1.3.5・・・の数字の意味教えて欲しいです!

立つ。 並んでいる。 の 3 5 分量を21 (k=1, 2, 3, ...), 分子を正の奇数とする分数が下のように1列に並んでいる。 分母が2の分数はそれぞれ 4' 4'4' 4'8'8'8' 13 15 8'8'8'8' 3 1 7 1 3 5 7 1' 2' 2' 9 11 8' この数列の第100項は アイ ウエ である。 また、 よって、 この数列の初項から 31 1024 までの和T を求めると, T= この数列に現れる分数で分母が2k-1 である2k-1 個の分数の総和 Skをkの式で表すと, S=ケ 31 1024 [サシスセ はこの数列の第 オカキク 項である。やす ソー である。 である。 答 ... 2m-1 第k群の番目の分数は A 分母が同じ項を1つのグループと考えて,前から順に第1群, 第2群, ・と呼ぶことにする。 このとき,第ん群には2個の分数が含まれ、 2-1 である。 つい する =0 項は,第7群の37番目の項である。 よって、 第100項は (1)100 (1+ 2 + 4 + 8 + 16 +32) +37 であるから,この数列の第 100 237-1 27-1 73 じ 64 01 第群の分子1,3, 5, 7, 9, ··· は、初項1, 公差の等差数列 であるから, 番目の分数の分 子 1+(m-1)-2=2m-1 る。 また, して 31 1024 がこの数列の第群の番目の分数であるとすると 31=2m-1 かつ 1024 = 2k-1 1024210 これを解いて m=16,k=11 31 ゆえに, がこの数列の第n項であるとすると + + 1024 01 n = (1+2+22 + 2 + ・・・ + 2) + 16 ()の中は初項1,公比2の等 1.(210-1) 2-1 Ea + 16 = 1039 比数列の初項から第10項まで の和である。 6 章 数列 1 Sk= 2k-1 + 3 2k-1 + 5 2k-1 +・・・+ 2.2k-1-1 2-1 1 -1 {1+3+5++ (22-1-1)} 1 1 . 2k-1 ..2k-1{1+ (2.2k-1-1)}= 2′- 1 31 は第 11 群の16 番目の項であるから,この数列の初項から 1024 (2) 分母を2k-1とする分数は 2-1 個あるから,第ん群の末項の分子は 2.2k-1-1である。 ゆえに 第群の末頃は,第群 24-1 分数であるから,その 分子は m = 2k-1 を代入して 2.2k-1-1である。 1+3+ +... + (2.2k-1-1) 初項 1 公差 2 項数 2-1 の等差数列の和である。 に使う 31 1024 までの和は T = S + S2 + ・・・ + S10 + 1 + 1024 1024 3 31 +・・・+ 1024/ 1 =1+2+2+ ・・・ + 2 + (1+3+5+...+31) 0731-(210-1) 1024 + 2-1 1 1023 + 4 = 1 1 1024 2 4093 4 . ・16(1+31) 1 +2 +2 + ・・・ +2° は, 初項 1,公比2,項数 10 の等比 数列の和であり, 1 +3 +5 + ・・・ + 31 は, 初項1, 31, 項数 16 の等 差数列の和である。 (X)D (原題 攻略のカギ! Key 1 群数列は、第群に属する項数と, 第k群の第m項の式を考えよ ①番目のグループ (第群)に属する項数をんの式で表す。 ②k番目のグループ (第ん群)を取り出し, その第項をkとの式で表す。 1つの数列をいくつかのグループに分けて, その第n項や和を求めるときは,次の2つのことを考える。 S 147

解決済み 回答数: 1