学年

質問の種類

数学 高校生

151. θはどこの角?と思ったのですがどこからこの場所(3.の解答の図の場所)であると分かるのですか?

236 43 030000 基本例題 151/3倍角の公式の利用 半径1の円に内接する正五角形 ABCDEの1辺の長さをαとし,0=2. 080057 (1) 等式 sin 30+ sin20 0 が成り立つことを証明せよ。 (2) cose の値を求めよ。 り (3) αの値を求めよ。 (4) 線分ACの長さを求めよ。 時間 最 p.233 基本事項 指針▷ (1) 30+20=2πであることに着目。なお, 0 を度数法で表すと 72°である。 (2) (1) の等式を2倍角・3倍角の公式を用いて変形すると (1) は (2) のヒント {0} COSOの2次方程式を導くことができる。 0<cos0 <1に注意して, その方程式を解く (3), (4) 余弦定理を利用する。 (4) では, (2) の方程式も利用するとよい。 解答 (1) 0から 50=2π このとき したがって (2) (1) の等式から sin 0 0 であるから, 両辺を sin0で割って 3-4sin20+2cos0= 0 3-4 (1-cos20) +2cos0=0 4cos20+2cos0-1=0 The ゆえに 整理して sin30=sin(2π-20)=-sin20 sin 30+sin 20=0 よって 3 sin 0-4 sin³ 0+2 sin 0 cos 0=0 0 <cos0 <1であるから (3) 円の中心を0とすると, △OAB において,余弦定理により AB²=OA²+OB²-20A OB cos 05(1-02005){( AC > 0 であるから AC= cos 0=1+√5 4 =12+12-2・1・1・ -1+√5-5-√5 4 a>0 であるから a=AB= (4) △OAC において, 余弦定理により AC2=OA2+OC2-20A・OC cos 20 30=2π-2050=30+20 5-√5 2 +2. −1+ 4 (*) =12+12-2・1・1・cos20=2-2(2cos20-1) =4-4cos20=4-(1-2cost)=3+2cos 2 -1+√5 (2) の(*)から。 5+√5 V 2 練習 11 ) 0=18° のとき, sin20 = cos30 が成り立つ 3倍角の公式 sin30=3sin0-4sin't 忘れたら, 30=28+0とし て, 加法定理と2倍角の 式から導く。 (3) BA (4) B C C 2751 a 1 1 0 D め ※加注 でに (1) 0=36°のとき, sin30= sin20 が成り立つことを示し, COS 36°の値を求め ある 次 sin co:

回答募集中 回答数: 0
数学 高校生

高一数学Iの三角比の問題です。 解き方を教えてください!

9. 次の会話の空欄にあてはまる数を入れよ。ただし,43と44は、 それぞれ下の記号 (ア)~ (ウ)から選べ。 【知識・技能】 【思考・判断・表現】 【主体的な学習】 解答番号43~50 三角形の辺の長さの求め方について、先生と太一さん,千晴さんが話し合っています。 -- 先生: 教科書p.105 の例2や問3では,「2辺とその間の角の大きさ」がわかっている場合に、残りの辺の長さの求 め方を学習しました。 太一:はい、覚えています。 余弦定理に与えられた辺の長さや角度を代入して、残りの辺の長さを求めました。 先生:では, 「2辺とその間にはない1つの角の大きさ」がわかっている場合には,残りの辺の長さを求めることが できるでしょうか。 千晴: 私はできると思います。 教科書p.103 の例題1問2では,正弦定理を使って辺の長さを求めました。 先生:そうですね。 でも、そのときに与えられた条件は、 「1辺と2つの角の大きさでしたね。 次のような場合に, 同じように正弦定理を利用して辺の長さを求めることはできますか。 (問題) △ABCにおいて,a=7,b=8,4=60°であるとき,c を求めよ。 千晴 : うーん・・・・。 正弦定理を使うと, sinB の値は求まりますが,辺の長さを求める式は作れそうにありません。 先生:そうですね。 では, 余弦定理を使うとどうでしょうか。 千晴:余弦定理を使ってを求めるから,式「=43」を使うのかな。 でも, わかっているのは4の大きさだよね。 太一:じゃあ、4の大きさを利用できる式 「44」を使ってみたらどうかな。 先生:では, その式を使って解いてみてください。 途中で2次方程式が出てきますので、解き方を思い出しながら 考えてみましょう。 [解] 余弦定理により, 45=46+c²-2・46・ccos47° 43 この式を整理すると,48c+49=0 cについての2次方程式を解くと, (c-3) (c-50)=0 千晴:解けました。 の値は2つあるんですね。 太一:cが2つあるということは, 与えられた条件を満たす三角形は2通りあるということですか。 先生:その通りです。 実際に図をかいて確かめてみましょう。 (ア) 62+&-2bccosA (1) ²+a²-2cacosB 44 45 46 よって,c=3,50 47 48 () a²+b²-2abcosC 49 50

回答募集中 回答数: 0