学年

質問の種類

物理 高校生

画像の問題の回答教えていただきたいです😿

題 1 次の文章を読み に適する数式を入れ, [ に適する語句または文章を入れよ。 ほぼ50年前に, 人工衛星の打ち上げに初めて成 功して以来, 人類は月面着陸さらに火星探査に成 功するまでに至ったが, 300年も前にニュートンは すでに人工衛星の可能性を予言していた。 ニュートンが予言したような地球のまわりを まわる人工衛星について考えてみよう。 ただし、地球を半径R,質量Mの一様な球と みなし, 地球と人工衛星以外の天体の影響, 地球の自転と公転および大気の影響は無視 する。 地表での重力加速度の大きさg は, M, R と万有引力定数Gを用いて,g=ア と表される。 いま, 地表から打ち上げられた質量 mo の物体が, 半径 α, 速さの円運動をする 人工衛星になった。 この衛星にはたらく円運動の加速度は万有引力によって生じるの で,その関係式はイと表される。 これより速さはv=ウ となり,この円運動 の周期T は, G, M, a によって,T=エと表される。円軌道を描く人工衛星のカ 学的エネルギーは、(イ) を用いて G, M, mo, a によって,オと表される。 ただ し,万有引力が0になる無限遠点を位置エネルギーの基準点にとる。 円軌道上の点Aで,衛星中の質量m' の部分が,衛星の進む方向と逆向きに相対速 度V(Vは正) で衛星から瞬間的に分離された。 分離直後, 衛星の残りの部分は質量が m=mom'となり, 速さがv からに増加し, 図のように地球の中心を焦点とす るだ円軌道を描くようになった。 質量m'の部分の速さはva-Vとなる。 ただし,分 離直前の衛星の速度の向きを正とする。分離前後で運動量が保存されるとして, その保 存則は,mo, m', m, Vo, va, V を用いてカで表される。 B UB VA -b A 地球の中心よりだ円軌道の近地点Aまでの距離はαである。 遠地点Bまでの距離を b とする。惑星の運動に関するキ]の第2法則を人工衛星に適用すると, 地球の中 心と衛星とを結ぶ線分(動径) が,単位時間当たりに描く面積は一定である。 近地点Aで の面積速度は 12/24v』であるから,遠地点 B での速度vgは,a,b, vaを用いて, - UB=ク と表される。 だ円軌道上では、力学的エネルギーは運動エネルギーと万有 引力による位置エネルギーの和であり保存されるから, 点A と点 B での力学的エネル ギーが等しいことは, G, M, m, va, UB, a, b を用いて,ケで表される。 (ウ), (ク),(ケ)より, a, b を用いて, "=| | XVO, UB=サ となる。 人工衛星が図のようなだ円軌道を描くためには,点Aでの力学的エネルギーが負で あればよいので, v = (ウ) を考慮すれば, "A<シ xv となる。これと (カ) より, Vの上限は, mo, m' を用いて, ス となる。 (コ)×vo の式を変形して, 6 (人工衛星の到達距離) を vo, va, a を用いて表す。 この式を用いて,vAが(シ)×vに限りなく近づくと,人工衛星の最大到達距離はどう なるかを述べよ。〔セ]

未解決 回答数: 0
数学 高校生

なんで位置エネルギーを使う時と使わない時があるのですか?

2 では、万有引力による位置エネルギーGmM, Y 〈問9-3 質量mの人工衛星が右ページの図のように、質量Mの惑星を焦点の1つとするだ 円軌道を描きながら運動している。 万有引力定数をGとして以下の問いに答えよ。 (1) A点とB点における人工衛星の速さをそれぞれG, M, R. rを用いて表せ。 A点で人工衛星を加速させ、速さがになった。 (2) 加速させる速さによっては, 衛星は軌道から外れ, 無限の彼方へと飛んでい くことがある。 衛星が無限遠に飛んでいくためのμに関する条件を求めよ。 まず, A点における速さと, B点における速さをそれぞれv,Vとします。 ここでまず思い出してほしいのは「面積速度一定の法則」 です。 9-1 でやったように, 長軸上に物体があるときを考えると, 面積速度が一定です から 解きかた (1) 1/2rv=1/12 RV① 2" 解きかた B点での面積速度 を用いる問題を解いてみましょう A点での面積速度 もう1つ、万有引力の問題では 「力学的エネルギー保存則」が重要です。 衛星は運動エネルギーと万有引力による位置エネルギーを持っています。 ます。 衛星には万有引力しかはたらきませんから,これらのエネルギーの総和は保存し よって、力学的エネルギーの保存を考えて mM 2 m² + ( - 6 m ) = /2 m² ² + ( - GR A点での位置エネルギー A点での運動エネルギー R v=√2GM r(R+r) R(R+r) ....... ② B点での位置エネルギー B点での運動エネルギー そして ① ② 式を連立して解くと (右ページで式変形は解説) V=√2GM 問 9-3 補足 1 A (1) 面積速度一定の法則(ケプ ラーの第2法則) より 2 1 ミ RV...... ① 2 質量 m B点での面積速度 ①②より ① より V= 質量 M A点での面積速度 力学的エネルギー保存則より A点での運動エネルギー Y R -G mM 1 / m²³² + ( - 6 mM ) = 1/2 m² ² + ( - 6 m). -G 2 Y R A点での位置エネルギー v= 2GM v...... ③ ③ ④ より ぴー ③ よりv=2GM R2 R2-2 R2 ②より-V=2CM(121-1212)=26 R R R r(R+r) i=2GM- i=2GM r R(R+r) B点での運動エネルギー R-r rR R-r rR v=2GM 万有引力による位置エネルギー " B wwwwwww B点での位置エネルギー V= 2GM- R r(R+r) R-r rR ****** わ~! 大変な 計算だぁ~」 T R(R+r) ちゃんと 自分で 解いてみる のだぞ 237 CO 9

未解決 回答数: 1
数学 大学生・専門学校生・社会人

物理の万有引力に関する質問です。 問1と問2は答えを出せたのですが、問3以降が分からず困っています。 どなたか分かる方がいらっしゃれば教えていただけると幸いです。 ちなみに、問1と問2に合っているか分からないですが、次のような答えになりました。 問1 mg=GMm/R... 続きを読む

問1 図1のように地上から,質量mの衛星を打ち上げて軌道に乗せることを考 える. 以下の問1~問5に全て解答しなさい. ただし, 地球は点Oを中心とす る密度一様な球体とし、 地球の半径をR, 地球の質量をM, 万有引力定数をG とする.また, 地球の自転による効果については考慮しない. 地上での重力加速度の大きさを R, M, G を用いて表しなさい. 問2 衛星を地上より鉛直上向きに速さ V。 で打ち上げて, 地球の中心から2Rの点 Aに達した時に速さが0になった. この時の速さ Vo を求めなさい. 問3 衛星が点Aに速さ0で達した直後, OAに垂直な方向に速さ VAに加速して, 点Aから地球の中心を通る延長線上のOB=6R となる点 B に到着した. この時 の速さ VA,及び, 点Bに到着した時の速さ VB を求めなさい. 問4 衛星が点B に達した直後, 速さ VC に加速して地球に対し半径 6R の等速円運 動をさせる. その時の速さと公転周期 Tc を求めなさい . 問5 地球に対し半径 6R の等速円運動をしている衛星の運動エネルギーK を用いて, この衛星がもつ力学的エネルギーを表しなさい. ただし, 万有引力による位置エ ネルギーの基準点は無限遠とする.

解決済み 回答数: 1