学年

質問の種類

数学 高校生

195. 変化率を求めるのになぜ微分が必要なのですか??

306 ACX 00000 基本例題 195 変化率 (1) 地上から真上に初速度49m/s で投げ上げられた物体のt秒後の高さんは h=49t-4.9t²(m) で与えられる。この運動について次のものを求めよ。た し,vm/sは秒速vmを意味する。 (ア) 1秒後から2秒後までの平均の速さ (1) 2秒後の瞬間の速さ (2) 半径 10 cm の球がある。毎秒1cm の割合で球の半径が大きくなっていくと き球の体積の5秒後における変化率を求めよ。 p.296 基本事項) 指針 (1) 高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア)平均の速さとは,平均変化率と同じこと。(んの変化量) ÷ (tの変化量)を計算。 (イ) 2秒後の瞬間の速さを求めるには 2秒後から2+b秒後までの平均の速さ (平均 変化率)を求め, 60 のときの極限値を求めればよい。 つまり、微分係数 f'(2)が 代入する。 t=2 における瞬間の速さである。 (2) まず,体積Vを時刻 tの関数で表す。これを V=f(t) とすると、5秒後の変化率は t=5 における微分係数 f'(5) である。 ( COX SU 解答 (1)(ア) (49・2-4.9.22)ー(49・1-4.9・12) zp(x2-1 =34.3(m/s) 2)+(x)\ (イ) t秒後の瞬間の速さはんの時刻t に対する変化率であ dh =49-9.8t dt る。 hをtで微分すると 700- 求める瞬間の速さは, t=2として ~+734 49-9.8.2=29.4(m/s) (2) t秒後の球の半径は (10+t) cm である。 t秒後の球の体積をV cm とすると dV dt Vをtで微分して 求める変化率は, t=5として 練習 4 V= ½π(10+t)³ 13.3(10+t)^1=4z(10+t)^{(ax+b)"'" 4 (10+5)^2=900(cm²/s) 3 tがaから6まで変化する ときの関数 f(t) の平均変 化率は f(b)-f(a) b-a ば,関数h=f(t) の導関数 f'(t), とを,変数を明示してをtで微分するということがある。 dh dt 参照。h'=49-9.8t と書い してもよいが, dh と書くと dt 関数h をtで微分してい ることが式から伝わる。 < については、下の注意 注意 変数がx, y以外の文字で表されている場合にも,導関数は今までと同様に取り扱う。 charf(t)などで表す。また,この導関数を求める。 例え V20x =n(ax+b)²-¹(ax+b) (1) 地上から真上に初速度 29.4m/sで投げ上げられた物体のt 100t-4912(m) で与えられる。 この運動につ t秒後の高さんは

未解決 回答数: 1
数学 中学生

中1 数学 どれでも良いので教えて欲しいです💦💦 一枚目、2枚目、3枚目、などと教えてくれると嬉しいです💦😭😭 お願いします🙇

応用問題 したものである。このとき、次の問いに答えなさい。 歩く速さは、妹の歩く速さの何倍ですか。 右の図は、姉と妹が家を同時に出発して学校まで歩くようすをグラフに表y (m) までの道のりは何mですか。 学校に着いたとき、妹は学校まで135mの地点にいた。 家から学校 右の図のような長方形 ABCD がある。 点Pは頂点Aを出発して秒速3cm AD上を頂点まで動き, 点Qは点Pと同時に頂点Bを出発して秒 2cmで辺BC上を頂点Cの方向に、点Pが頂点Dに着くまで動く。 2点P. が同時に出発してから秒後の台形ABQP の面積をycmとするとき、次 の問いに答えなさい。 をxの式で表しなさい。 bli A 4.5 右の図のように、歯車A,Bがかみ合って回転している。 歯車Aの歯 の数が60のとき、次の問いに答えなさい。 歯車の歯の数をxとする。 歯車Aが4回転すると歯車が回 転するとき、yをxの式で表しなさい。 8cm B 12cm 台形ABQP の面積が64cm" になるのは、2点P, Qが同時に出発してから何秒後ですか。 P→ 歯車が4回転すると, 歯車Bが5回転するとき, 歯車Bの歯の数はいくつですか。 (分) C B od □ 歯車の歯の数を40とする。歯車Aを1分間に4回転させたとき、歯車Bが1分間に6回転すると して baの式で表しなさい。 また, b は a に比例するか反比例するかを答えなさい。 学/数学1年 89

回答募集中 回答数: 0