学年

質問の種類

数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0
数学 高校生

(2)⑭についての質問です。 答えがわかっていたので、答えに合わせるように計算を行いました。 その時の計算式で Xの分散を小数第5位(0.81142)まで書いて計算しないといけない理由が分かりません。 教えて欲しいです。

例題2 [データの変換] 3 かし 温度の単位として, 損氏(℃)のほかに華氏 (°F)があり、℃とが同 じ温度を表すときのxとの関係は,,v=1.8c+32であることが知られて いる。 日本のある都市において, 1週間の最高気温を測定したデータが次の表 のようであった。 このとき、 次の値を求めよ。 ただし, 平均値は四捨五入 して小数第1位まで, 分散は四捨五入して小数第2位まで求めよ。 最高気温(℃) 8.5 9.2 10.8 8.2 日 月 火 水 木 金 土 8.7 7.9 8.3 (1) 最高気温の平均値と分散 ヒント 共分 Sky の偏差をgの偏差の 私の平均値 (2) 華氏 (°F) で表したときの最高気温の平均値と分散 解答 r= Sty Sx3y (1) 最高気温を表す変量を℃とすると, xの平均値は IC == // (8.5+9.2+10.8+8.2+8.7+7.9+8.3)=Dg.8 (℃) であるから, x-xと (x-x)の値は下の表のようになる。 8.5 9.2 10.8 8.2 8.7 ◆平均値 =(エエエッ 7.9 8.3 x-x -0.3 0.4 2.0 -0.6 ② -0.9 3 (xx) 20.09 0.16 4.00 0.36 ④ 0.81 5 分散 s よって,x の分散szは,s2=1/2x65,68 S = 00.8114285.7.... ²= {(x1−x)²+(x2-x)² n より, 四捨五入すると,08 +…+(x_x)}} (2) 華氏で表したときの最高気温の変量を°Fとすると, xとyに y=1.8c+32の関係があるから, yの平均値y は 9 y= 1-8 +1032 147-84 (°F) y=ax+bのとき 98.8 y=ax+b より、四捨五入すると, 華氏で表したときの平均値は,1247.8 F また,yの分散 sy2は 2 13 1.8 Xs2=14 より、四捨五入すると、華氏で表したときの分散は12,63 y=ax+bのとき s₁²=a²s₁² →1.8×1.8×0.81142 = 2.6290- 類題2 次の変量xのデータについて, u=- 2 変量をuとする。 x-50 とおいて得られる新しい x:64 52 54 77 60 68 57 65 59 74 次の値を求めよ。 ただし, 必要であれば, 61=7.8 として計算せよ。 (1)の平均値と標準偏差 (2)の平均値と標準偏差 例題2の答 1 8.8 2 -0.1 (30.54 0.01 15 0.25 65.68 70.811... 8 0.81 9 1.8 10 32 11 47.84 12 47.8 13 1.8 14 2.629・・・ 15 2.63 145

未解決 回答数: 1
理科 中学生

この問題の(4)と(6)がわかりません。 解説見てもわからなくて、、、 お願いします!

ド おもり J 図4 [糸I は, 水平である。〕 図5 〔糸Iは、水平である。 [] おもりJの重さは 1 N である。 糸Iが結び目を引く力の大きさを、図4図5で比べる ア 図4が大きい イ図5が大きい 力の大きさを 図4と図5で比べると, ア 図4が大きい ウ同じである。 糸I と糸 G が結び目を引く力の イ 図5が大きいウ 同じである ③ 11 ばねに分銅をつるし、分銅の質量とばねの長さとの関係を調べる実験をした。 以下の問いに答えなさい。ただ ばね自身やつないでいる糸の質量は無視できるものとする。また、ばね A~Iはすべて同じものを用いるものと 【実験1】 図1のように分銅をばねにつるしていき、ばねの長さと分銅の質量は表1のようになった。 表 1 図 1 ばねの長さ [cm] 12 14 16 分銅の質量[g] 20 40 60 問1 実験1においてばねの長さと分銅の質量の関係をグラフにしなさい。 問2 実験1において分銅の質量をx, ばねの長さを!とする。 このときの分 銅の質量æとばねの長さの関係を,xとy を用いた式で表しなさい。 問3 実験1に用いたばねに, 90gの分銅をつるしたときのばねの伸びを答えなさい。 【実験2】 ばね A~F を使い、 図2のように, 50gの分銅をつるした。 分銅 図2 000000000000 50 g ばねB 00000000 ば E 7600 ねじ ☐ 50 g 50 g ばねの長さ ばねF 20 20 の [cm] 104 0 00000000000000000000000 0 20 分銅の 50 g

回答募集中 回答数: 0