学年

質問の種類

数学 高校生

青チャート数Bの統計の分野です。 P(k)までは合ってるっぽいんですけど、以降の計算でΣ[k=1,n-2]kP(k)を、P(n-1)とP(n)は0だと思ったのでΣ[k=1,n]kP(k)にして計算したら間違ってました。おそらく何か勘違いしてるので、どなたか説明してくれませんか。

(2) E(X)-kp-kn(n-1) n(n-1) (nk-k²) = n(n=1) {n • \/ \n (n+1)= | | (n+1)(2n+1)} 2 = n(n-1) = n(n+1)(3n-(2n+1)) n+1 6 3(n-1)(n-1)=n+1 3 また E(X)=R²-k²- 2(n-k) n(n-1) n(n-1) (nΣk²-k³) 2 72° また、に関係しない の式を 前に出す。 =(n+1) -n(n+1)(2n+1) =(-1) { //1n(n+1)(2n+1)-1/13r(n+1)} = 1/2(+1) n(n+1) 6 よって_V(X)=E(X*)-{E(X)n(n+1)_(n+1) (n+1)(n-2) 18 本 (nは3以上の整数) のくじの中に当たりくじとはずれくじがあり、そのうちの ② 66 2本がはずれくじである。このくじを1本ずつ引いていき、2本目のはずれくじを 引いたとき、それまでの当たりくじの本数をXとする。 Xの期待値E(X)と分散 V (X) を求めよ。 ただし, 引いたくじはもとに戻さないものとする。 [類 新潟大 p.519 EX 39.40 出るこ るときであるか [2]Zのとりうる よって、(1)から 二項定理により ゆえに、 Zn個の確率 副題の(2)は,次 knに対し X. 2 Xs........ EC 2以上の自 勝った人の数 (1) ちょうど (2)Xの期待 X-Omer P(x+c) = t h PD U ( n n y ) Ci me Pry=2)= (+ 1-2 A-3) 3 (+ P ht (n-2) -3 n-14 h (例2 (Pf) (=(n-2)/(h= h-1-k (h)! n(h+1) \^<2)! (^^-*) W (m-k)? (+) Ex)=l=k-1 2k+1) =h(n-1) ht 573072. pm. Proof={ \+) (2011) + {ach+i)} = +11 + (2n++ b + 4) h-1 2(n+1)(nt) == n-1. 3(h-1)

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

大学受験で、周期表はどこまで覚えた方が良いでしょうか?流石に全部覚える必要はないですか?

1 ヘリウム 4.003 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 H |2Hel 水素 1.008 Lia Bel 2 リチウム ベリリウム 6.941 9.012 典型元素 5B 6C N O F Ne 10] ホウ素 遷移元素 10.81 炭素 12.01 窒素 14.01 酸素 16.00 フッ素 ネオン 19.00 20.18 3 11.Na12Mg ナトリウム マグネシウム 22.99 24.31 13A 14S 15P 16S 17CI 19 Ar アルミニウム ケイ素 26.98 リン 硫黄 塩素 アルゴン 28.09 30.97 32.07 35.45 39.95 4 19K 20Ca 21Sc 22Ti 23V 24 Cr 25Mn 26Fe27Co 26 Ni 29Cu30Zn32Ga32Ge33As 31Se 35 Br 36Kr 39.10 カリウム カルシウム スカンジウム チタン バナジウム クロム 40.08 44.96 47.87 50.94 52.00 マンガン 20 コバルト ニッケル 54.94 55.85 58.93 58.69 63.55 65.38 69.72 鉛 ガリウム ゲルマニウム ヒ素 72.63 74.92 セレン 臭素 78.97 79.90 クリプトン 83.80 5 37Rb 39Sr 39Y 40Zr 42Nb 42 Mo 43TC 44 Ru 45 Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb52Te 531 530Xe 544 87.62 88.91 91.22 92.91 ルビジウム ストロンチウムイットリウムジルコニウム ニオブ モリブデン テクネチウムルテニウム ロジウム パラジウム 85.47 | カドミウム インジウム スズ アンチモン テルル ヨウ素 キセノン 95.95 (99) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 60 55 SCs ss Bal 57~71 72Hf 73Ta 74W 75Re 76Os 77lr 78Pt 70 Au 30Hg 81 TI 02Pb 83 Bi 34 Poss At 86 Rn 80 132 178.5 セシウムバリウム ランタノイド ハフニウム タンタル タングステン レニウム オスミウム イリジウム 白金 17.3. 180.9 183.8 192.2 金 186.2 190.2 195.1 197.0 水銀 タリウム 200.6 鉛 204.4 207.2 ビスマス ポロニウム アスタチン 209.0 ラドン (210) (210) (222) |37 Fring Ral | 89~103 104Rf 105Db 106Sg 107 Bh 108HS 100Mt 110DS 12Rg 112Cn 113Nh 114F 115MC 116 Lv 117 TS 1180g | フランシウム ラジウム アクチノイドラザホージウムドブニウム シーボーギウム ボーリウム ハッシウムマイトネリウム ダームスタチウムレントゲニウム コペルニシウム ニホニウム フレロビウム モスコビウムリバモリウム テネシン オガネソン (223) (226) (268) (271) (272) (280) (285) (293) (267) (277) (276) (281) (278) (289) (289) (293) (294) 7

回答募集中 回答数: 0
数学 高校生

解説お願いします

4 ある日、太郎さんと花子さんのクラスでは,数学の授業で先生から次のような宿題が出された. [宿題] △ABCの内部に点Pを取り, 点Pから直線 BCにおろした垂線をPD, 点Pから 直線CA に下ろした垂線をPE とする. また, 点Aから直線 BCに下した垂線の長さを ha, 点Bから直線 CA に下ろした垂線の長さを ん と置く. PD:hA=PE:hp=1:3 であるとき, △PAB と △ABCの面積比を求めよ. (1) 太郎さんは, 宿題について,つぎのような構想をもとに, 正解を得た. 太郎さんの構想 △ABCの面積をSとすると, △PBC, △PCA の面積もSを用いて表すことができる. それらを用いて, △PABもSを用いて表す. 太郎さんの解答・ △ABCの面積をSとすると △PBC = △PCA = ア S と表せる. よって △PAB= イ S であるから △PAB △ABC= イ : 1 (i) ア イ に当てはまるものを,次の①~⑦のうちから一つずつ選べ。但し、同じ ものを選んでもよい . ⑩ 2 0 3 ② 4 ③ 6 ④ 12 [⑤ 1-3 1 ⑥ DI ⑦ 4 太郎: 宿題の点Pはどのような点なのだろう. 花子 : 直線 CP と直線ABの交点をF と置くと, AF:BF = ウがわかるよ. 太郎: ということは, APFとAPCの面積比から, 点Pは△ABCの エ であると いうことがわかるね. (ii) ① 2:1 ② 3:1 [③ 1:2 ウ に当てはまるものを、次の⑩~④のうちから一つ選べ。 1:1 1:3 (iii) エ に当てはまるものを,次の①~③のうちから一つ選べ。 ⑩重心 ①外心 ②垂心 ③傍心 -5-

回答募集中 回答数: 0
数学 高校生

数学1数と式です。 イがわかりません。教えてもらいたいです。

色のカードが (全 ) 問答 第5回 数学Ⅰ, 数学A 赤色の ずつかれている。 第1問(配点 30) 並べたカードに C て同じ数字が醸する [1] 直線道路沿いの五つの地点に家が並んでいる。これら5軒の家に荷物を届ける とき、道路沿いのどこか1か所に車を停めて配りたいが,できるだけ移動距離を 短くすることを考える。 図1のように, 5軒の家の地点を順に点A, B, C, D, E, 車を停める地点 を点Pとして,L=PA+PB+PC+PD+PE が最小になる点Pの位置につい て考察しよう。 このうち、となる姿 A B P C D E 図1 223, 1, 10 Fath 太郎さんと花子さんが,点Pをどこにとればよいかについて話している。 太郎 : 点Pの位置は2点A, Eの真ん中でいいんじゃないかな。 花子:そうかな。図上で点Pの位置を動かして, Lの値がどのように変化す るか調べてみようよ。 * = ぞれ連続する 例えば、図2のように,点Pを2点B,Cの間で右に距離d(d>0) だけ動かしてみる d信しない並べ方は A BP CD C D E 図2 すると,PA+PB は 2d だけ増加して,PC+PD+PE は 3d だけ減少 するから,結局, Lの値はdだけ小さくなるね。 太郎:点Pを2点 B, C の間で右に動かすときは,花子さんの言ったことが 成り立つね。 点Pを点Cより右側の位置で動かすとどうなるかな。 花子: さっきと同じように考えてみようよ。 (第5回1) (数学Ⅰ 数学A 第1問は次ページに続く。)

未解決 回答数: 1