学年

質問の種類

物理 高校生

問3についてです。 容器の中の空気の圧力が回答をみると図35-3では下向きに図35-4では上向きになってたりしてる理由を教えてほしいです。

*第35問 次の文章を読み, 下の問い (問1~3)に答えよ。 (配点 12 18分 れ、底面を上にして静かに手を離すと, 図1のように, 円筒中の水面が外部の水 より少し下がった状態で,鉛直に静止した。 外部の大気圧をPo, 水の密度を 一端を閉じた質量M, 断面積Sの円筒を,内部に少し空気が残るように水中に入 力加速度の大きさを」とする。円筒は熱を通さず、円筒の厚さは無視できるもの する。また,円筒内部の空気は、常に水温と同じ温度であるとし,その質量は に比べて十分小さく無視できるものとする。 DISO OST 大気圧 Po 質量 M, 断面積 S 問2 水温を測定したところ15℃であり、円筒内の気柱の高さはだった。その状 態から,水温を43℃まで上げた。 このとき気柱の高さはの何倍になるか。 最も適当な数値を,次の①~⑥のうちから一つ選べ。ただし、外部の大気圧 はPo. 水の密度はpのままであるとし、水の蒸発は考えないものとする。 2 倍 ① 0.3 ② 0.9 ③ 1.1 ④ 1.5 ⑤ 2.2 ⑥ 2.9 問3次に,図2のように円筒を鉛直に保ったまま引き上げると,円筒内の水面は 外部の水面からんの高さまで上がった。 このとき,手が円筒を上向きに支えて いる力の大きさを表す式として正しいものを、下の①~⑥のうちから一つ選べ。 3 p 図 1 Po h 問1 円筒の内部の空気の圧力を表す式として正しいものを次の①~⑥のうち から一つ選べ。 1 第2章 熱と気体 ①Po- Mg S ②Po Mg ③Pos ④ PS - Mg 図 2 ⑤ PS PS + Mg 3 Mg-pShg ② Mg ① Mg + pShg ④ Mg + pShg + PoS ⑤ Mg + PS ⑥ MgpShg + PS

回答募集中 回答数: 0
数学 高校生

この問題のエ.オには0.6がはいり、カ.キには1.2が入ります。 なぜ両方の求め方で正規分布N(51.0,0.3^2)に従っているのに標準偏差の値が変わるのでしょうか、? 求め方が違うということがやかるのですがなぜ値が変わってくるのかわかりません。。わかる方いらっしゃいまし... 続きを読む

第5問 (選択問題) (配点 16) 以下の問題を解答するにあたっては、必要に応じて(第5回-16) ページの正規 分布表を用いてもよい。 統計的な推測においては、本質的に重要な性質がある。それについて考えてみよう。 (1)母集団から無作為抽出された標本の独立性とその特徴について、実際の例をもと に考える。 いま, 内容量 50g と表示された小袋が四つ入ったお菓子の袋(以下,「大袋」と呼 ぶ)があったとする。以下では、袋の重さは考えずに、お菓子の重さだけを考える ことにする。四つの小袋に入っているお菓子の重さを,それぞれ X1,X2, X3, X4(g) とし,各X, (i = 1, 2, 3, 4) は平均 (期待値) 51.0 標準偏差 0.3 の正規分布 N (51.0, 0.32) に従うとする。 このとき,Y=X1+X2+X』+X」 とおけば、各Xは互いに独立と考えてよいか ら、確率変数Yの平均はE(Y) 計算できる。 標準偏差は (Y)= アイウ エ. オ と ところで,大袋に表示されているお菓子の重さは50×4=200(g) である。これ と対比するために,小袋に分けられていない四袋分のお菓子の重さを表す確率変 数Z = 4X を考える。 ここでXは正規分布 N (51.0, 0.32) に従うとする。 このとき,確率変数の定数倍の平均と標準偏差についての関係式によれば,Zの キ 平均はE(Z) = アイウであるが,標準偏差は (Z)= カ となり,上 で求めた。 (Y) の計算結果と異なる。この差は,X1,X2, Xs, X4 が無作為標本で あり、各X; が互いに独立であることに起因している。 この例からわかるように、無作為標本の性質,すなわち,確率変数が互いに独立 な同一の分布に従っていることを理解しておくことが重要である。 (数学II,数学B,数学C第5問は次ページに続く。) (第5回13)

回答募集中 回答数: 0
数学 高校生

【統計的な推測】 確率変数XiとXってなんなんですか? 何が違うんですか? 頭の悪い質問ですみません🙋

第5問 (選択問題) (配点 16) いてもよい。 問~第7問は,いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては, 必要に応じて 19ページの正規分布表を用 太郎さんと花子さんには,共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ,1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の の割合といわれているが, 2人は常々もっと少ない割合ではないかと感 そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め、 検討してみることにした。 1 割合は 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと 止めておくことにした。 数学Ⅱ・数学B 数学 C 2人は, どの包装についても確率で特別な味付けのお菓子が, 確率 1-で普 通のお菓子が入っているように0 <<1である定数を定められると仮定して p=1/3であることを帰無仮説 = 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 菓子が入っており,確率 で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数X を, 数 えが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X = X1+X2+ ・・・ + X 400 により確 率変数Xを定める。 X, Xの期待値 E (Xi), F(X)について E (X)= コ (i=1, 2, ..., 400) であり E (X)= シス である。 また, Xi, X の分散 V(X), 太郎 : 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 (個人の得点) (平均点)、 (標準偏差) ×10 で (X)について V(X)= セ ソタ (i=1, 2,.., 400) であり V(X)= チッ で 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ 96 る棄却域は ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ 以下または キク ある。 400 を十分に大きい数とみてXの確率分布は期待値 シス 標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準5%の両側検定により ト 。 以上と 400- なるね。 30 の解答群 69 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 4. 6 ⑩仮定を疑わせる結果となった 花子: 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ①仮定を疑わせる結果とはならなかった 0405 1.96×10+50 =-19,650 (数学Ⅱ・数学B 数学C第5問は次ページに続く。) 20.95 69,6 -16- (数学Ⅱ・数学B 数学C第5間は次ページに続く。) -17- 400

解決済み 回答数: 1
数学 高校生

2021②-5 ①蛍光ペンを引いたところの問題でいうところのカキクなのですが、前に出てるaをそのまま2乗してはいけないのですか?答えにはaの2乗=a➕1とあり、確かに途中でウエオのところでaはすでに答えが与えられてるけど、それを2乗したら出てくるはくるのですが、なぜここで... 続きを読む

44 日 第3問~第5問は、いずれか2問を選択し、解答しなさい。 第5問 (選択問題(配点 20 さま 1辺の長さが1の正五角形の対角線の長さをαとする。 (1) 1辺の長さが1の正五角形 OA,B,CiA2 を考える。 第1日程 数学Ⅱ・数学B 45 (2) 下の図のような, 1辺の長さが1の正十二面体を考える。 正十二面体とは, どの面もすべて合同な正五角形であり. どの頂点にも三つの面が集まっている へこみのない多面体のことである。 a A2 C₁ A1 B1 10. 1+30 B2 [C A: 0 B D 110 とされる。キリによ! すべて 4点( ZA,CB=31 CiA1A2 アイとなることから,AA2と BC」 は平行である。ゆえに 面 OABICA2に着目する。 OA」 と A2 B1 が平行であることから OB1=0A2+A2B1=0A2+ OA₁ AA= ウ BIC である。 また に であるから 1 BC1= 1 ウ AA2 T (OA2-OA) ウ で絞り立てみ 正 |OA2OA1|2|AA2|2 正方形ではな =80-80 + a ク また, OAとABIは平行で,さらに, OA 2 と AC も平行であることから に注意するとはない る。 BICI=B1A2+ A20+ OA] + AC1 ウ =- OA-OA2+OA」 + OA2 I - オ OA2- OA₁ 0=ab+adah となる。 したがって 1 I ウ ケ コ OA OA2= + でない を得る。 (数学Ⅱ・数学B第5問は次ページに続 補足説明 ただし、 サ は,文字 αを用いない形で答えること を得る。 (数学Ⅱ・数学B第5問は次ページに続く。) が成り立つ。0に注意してこれを解くと,a= 449-

解決済み 回答数: 1
数学 高校生

2024本試験-5 イウについてなのですが、確かに問題文の初めで比は与えられているのですが、それをそのまま使っても良いのですか? 別の線だから、比は同じでも元の長さは違うからとか考えなくてもいいのですか? 2枚目以降の写真は別の問題なのですが、この時、比をそのまま使っては... 続きを読む

第3問~第5問は、いずれか2問を選択し、解答しなさい。 28・15 200表示さ 第5問 (選択問題(配点 20 図1のように, 平面上に5点A, B, C. D, E があり, 線分AC, CE, EB, ED. DAによって、星形の図形ができるときを考える。 線分ACとBEの交際 P.ACとBD の交点をQ, BD と CEの交点をR, BE の交点をT とする。 CEの交点をDとCEの文 A11 E 10 ここでは B R × 図 1 TAT (1) AQD 直線 CE に着目すると 2024年度 本試験 数学Ⅰ・数学A 29 =SEとな AP 22/13 ANE E SET QR DS =1 Q RD SA CQ 3 AD と R が成り立つのでの水 (1) と表示され 同じものを選んでもよい QR: RD イ: 3 ** DA JE R となる。 また, △AQD と直線BE に着目すると #00 0801 =82 00 DAT QB: BD D エ : オリ ① 100 DA となる。 したがって編 BQ QR RD = エ : イ となることがわかる。 ア の解答群 AP:PQ:QC=2:3:3, AT : TS: SD = 1:1:3 AC ① AP ②AQ (3 CP を満たす星形の図形を考える。 以下の問題において比を解答する場合は, 最も簡単な整数の比で答えよ。 (数学Ⅰ・数学A第5問は次ページに続く。) 問3A学1年) 土 X DX .0 e ④PQ (数学Ⅰ・数学A 第5問は次ページに続く

解決済み 回答数: 1
地理 高校生

KP-21 図2の方がわかりません。 ヨーロッパがアになるのですが、どうして低下したのですか?また、イが中南アメリカなのですが、人口が増えたのですか?中南アメリカは北アメリカと南アメリカの間にあるメキシコからパナマまでぐらいだと思うのですが、なぜなのですか? どなたかすみま... 続きを読む

理総合, 地理探究 第5問 人口と村落・都市に関する次の問い (問1~5)に答えよ。(配点 17 ) 次の図1は、いくつかの地域における1950年と2020年の年齢3区分別人口割 問1 合を示したものであり, A~Cは,北アメリカ, ヨーロッパ, 中南アメリカの いずれかである。 また, 後の図2中のア~ウは, 1950年と2020年のこれら3地 域のいずれかの人口が世界人口に占める割合を示したものである。 北アメリカ に該当する正しい組合せを,後の①~ ⑨のうちから一つ選べ。 21 ① ② 年齢3区分別人口割合 A A 世界人口に占める割合 ア イ ③Aウ ④ 地理総合, 地理探究 ⑥ ⑤ ⑥ ⑦ ⑧ B B B C C C ア イ ウ ア イ ウ 問2 次の表1は,いくつかの国について,性比*と死亡率の推移を示したもの であり,①~④は,イタリア, ケニア, サウジアラビア, 中国のいずれかであ る。中国に該当するものを, 表1 中の ① ~ ④ のうちから一つ選べ。 22 *女性100人に対する男性の数。 ** 5年間の年平均値。 1950年 VA A 2020年 1950年 B 2020年 1950年 C a 2020年 0 20 40 60 80 100% 年少人口 生産年齢人口 8 老年人口 World Population Prospects により作成。 1950年 図 1 2020年 イ World Population Prospects により作成。 ゥ□その他 図 2 表 1 性比 死亡率 (%) 2020年 1955~1960年 1985~1990年 2015~2020年 137.1 21.2 5.5 3.5 105.3 21.3 6.7 7.1 98.8 21.3 10.0 5.5 94.9 9.7 9.6 10.5 World Population Prospects により作成。

解決済み 回答数: 1