学年

質問の種類

数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1
数学 高校生

(2)の解き方が分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

基本 例題 15 塗り分け問題 (1) 赤、青、黄、白の4色の絵の具で塗り分けるとき 右の図で, A, B, C, D の境目がはっきりするように, すべての部分の色が異なる場合は何通りあるか。 (4) 同じ色を2回使ってもよいが、隣り合う部分は異な 色とする場合は何通りあるか。 CHART & SOLUTION 00000 A C D B 塗り分け問題 特別な領域 (多くの領域と隣り合う, 同色可) に着目 (2)最も多くの領域と隣り合うCに着目し, C→A→B→Dの順に塗っていくことを考える。 (1) A, B, C, D の文字を1列に並べる順列の数と同じ。 答 (1) 塗り分け方の数は, 異なる4個のものを1列に並べる方 法の数に等しいから 4!=24 (通り) (2) C→A→B→Dの順に塗る。 C,A,Bは異なる色で塗るから, C→A→Bの塗り方は 4P3=24 (通り) DはCとしか隣り合わないから, C→A→B→D 4 × 3 × 2 × 3 Cの色以外の3通りの塗り方がある。パー! よって, 塗り分ける方法は全部で 24×3=72 (通り) a- Cの色を除く 2 CとAの色を除く 3 Cの色を除く ← A B C D に異なる4色を 並べる方法の数に等しい。 A, B, D の3つ Cは, の領域と隣り合う。 A とBは、2つの領域, D は1つの領域と隣り合 う。 INFORMATION (2)の別解 塗り分けに使えるのは4色。 Cは3つの領域と隣り合うから 4色と3色で塗り分け る2通りについて考えてみよう。 [1] 4色の場合 (1) から 4!=24 (通り) 2] 3色の組合せは,どの1色を除くかを考えて 4通り その3色の組に対して, C→A→Bの塗り方は 3!=6(通り) SE DはCと異なる色の2通りで塗り分けられる。 よって、3色の塗り分け方は [2]から 24140 4×6×2=48 (通り)

解決済み 回答数: 1