学年

質問の種類

数学 高校生

因数分解の問題で、cについて整理して下線部のような式にはどうすればなりますか? 計算方法を教えて下さい🙇‍♀️

2 因数分解/2次式・ つぎの式を因数分解せよ. (1) (a-b+c-1)(a-1)-bc (2) 2x2+5xy-12y2-2x+25y-12 (3)(x+2y) (x-y) +3y-1 (酪農学園大酪農、環境) (京都産大・生命) odel-Co SI-((東北学院大・文系) 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 の文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」 をすればよい。 (2)も, x, yの2次式の部分を因数分解すれば同様にできる(別解). 慣習 因数分解せよ,という問題では, 特に指示がない限り, 係数が有理数の範囲で因数分解する . ■解答 (1) まずcについて整理することにより, 与式={c(a-1)+(a-b-1) (a-1)}-bc 与式はαについては2次だが, 6 やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1) (a+c-1) (2) まずについて整理することにより, 5-2x²+(5y-2)x-(12y2-25y+12) =2x²+(5y-2)r-(3y-4) (4y-3) a={x+(4y-3)}{2x-(3y-4)}....... 3-4-25 × -3 ① 1 (4y-3) × 2-(3y-4) →5y-2

解決済み 回答数: 1
数学 高校生

(1)についてで、Xを消去する時消去する文字Xについての範囲だけを考慮すれば良いと思っていました。しかしこの問題で、Xを消すとyの範囲も消えてしまったのですが、消す以外の文字の範囲についても引き継ぎを気にする必要があるのですか?解答よろしくお願いします。

XX 例題 267 面積[7] ・・・円と放物線で囲まれた部分 ★★★☆ 放物線y=x2. ① と円 x+(y-α)2 = 1 ... ② は異なる2点で接する。 (1) 定数α の値を求めよ。 (2)②の外側で,放物線①と円 ②で囲まれた部分の面積Sを求めよ。 (1)円と放物線が接する条件は, 例題 111 参照。 思考プロセス y (2) SS(ロロ)dxとしたいが, 円 ②はy=±√1-x+α となり,積分計算できない。 見方を変える A A Q PQ P Q P Q Action» 円と曲線で囲まれた部分の面積は,まず中心角を求めよ y+(y-α)2=1 例題 111 よって y2-(2a-1)y+α°-1 = 0 ... (3) 解 (1) ① ② より, xを消去すると 今回 ①と②が異なる2点で接するのは,③が正の重解をも つときである。 3 ③の判別式をDとすると D=0 P197 D={-(2a-1)}-4(α-1)= -4a +5 次数が低くなるようにx を消去する。 yを消去し て考えることもできる。 例題 111 〔別解 1)参照。 SID=0 かつ f(y) = y2-(2a-1)y+d-1 の軸の直線 54 れる 5 -4+5 = 0 より a = 4 3 9 このとき ③は v+ = 0 と 2 16 3 これは正の重解y= をもつから a= 4 3 (2) y= 4 ①に代入すると 3 x=± 2 ないよって、接点P,Qの座標は y 2a-1 y = > 0 から 2 αの値の範囲を求めても よい。 実際に 「正の」重解に なることを確かめる 181 √3 3 しな 2 √3 3 2 4 2 3 4 5-4 A 4 A √√3 3 S = 4 あり、②の中心をAとすると ∠PAQ = 120° したがって, 求める面積Sは x²)dx-(7.12. 60°- P √3 32 2 √3 x 2 ∠PAO=60° より ∠PAQ = 120° P 120° 1 Q · 1². sin 120° 360° 2 ① ② √3 π /3 2 3√3 π 3 4 4 ■267 放物線y = x2 ・・・ ①と円x2+(y-2 (1) 定数αの値を 1 2点で接する。

解決済み 回答数: 1