学年

質問の種類

数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

105.2 記述に問題ないですか?

て求めよ。 後の数の差が せよ。 24148 基本事項 ② される。 下3桁が8の とみなす) Da+b を示す。 ■ +36 6 00m 122 切ると 122 である になる。 tcが 基本例題105 素因数分解に関する問題 63n 40 7 (1) (1) (2) 解答 (1) √Am (m は偶数)の形になれば, 根号をはずすことができるから, 指針 いずれの問題も素因数分解が,問題解決のカギを握る。 √の中の数を素因数分解しておくと、考えやすくなる。 n (2) 14/05 = (mは自然数) とおいて, ,2 n³ 196 " 441 を考える。 JUSCONOTON 練習 ② 105 n² n , 6 196, 63n (1) (3) が有理数となるような最小の自然数nを求めよ。 BSC1638 COMERC V 40 これが有理数となるような最小の自然数nはn=2・5・7=70 n (2) = (m は自然数) とおくと 6 ゆえに 3 n 441 N 53 441 3².7n 2³.5 7 3a+2a+? EKOPACOTCO これが自然数となるのは, が7の倍数のときであるから, m=7k(kは自然数) とおくと n=2.3.7k ① よって用 23.33.73k³ 3².7² -= 2³.3.7k³ ONDOR 3220520 これが自然数となるもので最小のものは, k=1のときである から, ① に k=1 を代入して n=42 n 10 n=2.3m n² 22.32m² 32m² \2 196 (3m)² ² = 2272 500 77n = 1 【検討 素因数分解の一意性 素因数分解については,次の 素因数分解の一意性も重要である。 がすべて自然数となるような最小の自然数nを求めよ。 p.468 基本事項 ③ 3 7n 2 V 2.5 18 nº が自然数となる条件 が有理数となるような最小の自然数nを求めよ。 √54000nが自然数になるような最小の自然数nを求めよ。 3 2 n° 45 00000 000 UT 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では、2通りに素因数分解できれば,指数部分の比較によって方程式を 解き進めることができる。 問題 3"15"=405 を満たす整数m,nの値を求めよ。 解答 3.15=3(3・5)"=3"+".5", 405=34・5 であるから 3m +1.5"=34.5 よって m=3, n=1 指数部分を比較してm+n=4,n=1 |素因数分解 3) 63 3) 21 7 63=3².7 63=327,40=23.5 3 7 2 V 2-5 ・×2・5・7 =12/23.7=12/12 (有理数) となる。 HO より, kが最小のとき, nも最小となる。 1645500 03-31801- がすべて自然数となるような最小の自然数n を求めよ。 (p.484 EX74.75

回答募集中 回答数: 0
数学 高校生

105.2 記述これでも大丈夫ですか??

基本例題105 素因数分解に関する問題 (1) (2) V40 63n n n² 6'196' BAL. 解答 が有理数となるような最小の自然数nを求めよ。 **BaC18030 3 n³ "ST (2) がすべて自然数となるような最小の自然数nを求めよ。 4410 p.468 基本事項 ③ 指針 いずれの問題も素因数分解が,問題解決のカギを握る。 (1) √A" (mは偶数) の形になれば, 根号をはずすことができるから, √の中の数を素因数分解しておくと,考えやすくなる。 n (2) 17/12 = (m は自然数) とおいて、 を考える 63n 40 DY n² n 23 196' 441 32.7m 3 7n (1) 2³.5 21 2.5 上 これが有理数となるような最小の自然数nはn=2・5・7=70 n (2) 2/1- = (m は自然数) とおくと nº 22.32m²32m² 2 3-m² = (3m)² ゆえに 196 22.72 +77 これが自然数となるのは m=7k(kは自然数)とおくと よって n=2.3m n³ 23.33.7°ki = 23・3・7k3 441 3².7² が自然数となる条件 BONGOTO が7の倍数のときであるから, ① n=2.3.7k 80/00000 これが自然数となるもので最小のものは, k=1のときである から ① に k=1 を代入して n=42 【検討 素因数分解の一意性 - |素因数分解については,次の 素因数分解の一意性も重要である。 この自然数nを求め 63=32・7,40=23・5 JMS 3 |素因数分解 3) 63 3) 21 7 63=32.7 12/12/25×2-5-7 -×2・5・7 212・5 - 12/27-12/12 (有理数) •7=. となる。 < ① より kが最小のとき, nも最小となる。 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では, 2通りに素因数分解できれば,指数部分の比較によって方程式を 解き進めることができる。 問題 3.15"= 405 を満たす整数m,nの値を求めよ。 [解答 3.15"=3"(3.5)"=3m+n.5", 405=34・5であるから 3m+n.5"=345 よってm=3, n=1 部分を比較して m+n=4,n=1

回答募集中 回答数: 0
数学 高校生

105.2 記述これでも大丈夫ですか??

求めよ。 の数の差が たよ。 148 基本事項 [2] れる。 3桁が8の なす ) +b を示す。 36 n ると 22 である なる。 基本例題105 素因数分解に関する問題 解答 n 6 7 が有理数となるような最小の自然数nを求めよ。 40 n² n³ 1961 441 いずれの問題も素因数分解が,問題解決のカギを握る。 (1) √A" (mは偶数)の形になれば, 根号をはずすことができるから, √の中の数を素因数分解しておくと、考えやすくなる。 n (2) = (mは自然数)とおいて, n² n³ 196' 441 を考える。 63n 40 V 32.7m 3 7n 2³.5 2 V 2.5 これが有理数となるような最小の自然数nはn=2・5・7=70 [ 105 = = (m は自然数) とおくと n=2.3m 6 n222.32m² ゆえに がすべて自然数となるような最小の自然数nを求めよ。 P.468 基本事項 3-m²-(37)² 196 22.72 72 これが自然数となるのはが7の倍数のときであるから, m=7k(kは自然数) とおくと n=2.3.7k..... 2³-33-7³k³23.3.7k³ よって (1) (2) n³ 441 3².7² これが自然数となるもので最小のものは,k=1のときである から ① に k=1 を代入して n=42 = 検討 素因数分解の一意性 |素因数分解については,次の 素因数分解の一意性も重要である。 が自然数となる条件 77 解答 3"15"=3"(3.5)"=3m+n.5", 405=34.5 であるから 3+".5"=34.5 よってm=3, n=1 指数部分を比較して m+n=4,n=1 n 45 n を求めよ。 <63=32・7,40=23-5 3 7 2 √2-5 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では、2通りに素因数分解できれば、指数部分の比較によって方程式を 解き進めることができる。 問題3"15"= 405 を満たす整数 m, n の値を求めよ。 素因数分解 3) 63 3)21 7 63=3²-7 = X2-5-7 12/27-22 (有理数) ・7: となる。 TAHO ①より, kが最小のとき, nも最小となる。 500 が有理数となるような最小の自然数n V77m /54000nが自然数になるような最小の自然数n を求めよ。 n³ がすべて自然数となるような最小の自然数nを求めよ。 Op.484 EX 74.75 471 4章 17 約数と倍数 最大公約数と最小公倍数 3 る 15 1!'C 1 m っ 倍で 数 ① る n進

回答募集中 回答数: 0
数学 高校生

これらの途中式を教えてほしいです

(1) (2) (1) 2 75-2 の整数部分をa、小数部分をbとするとき、 bx+y 2-6 4x イ (2) 2012/64+ となる。 =bを満たす有理数xyはx=カキ (1) aを定数とする。2次方程式 について、判別式Dは. ' + (a +1)x+α+a-1-0 ・・・・ コサ ウ となり. (a+26) エオ」となる。 ·<a<* x² ≤ 38 038 < x≤39 39 < x² ≤ 40 Ⓒ40 < x≤ 41 41 く 64x¹ D-- ア 9²- イ ウ となる。したがって, ① が異なる2つの実数解をもつの値の範囲は、 エオ カ M となる。 サ (2) 正の数xとその小数部分yに対して, x+y=40 ① が成り立つとする。 について次の⑥~④のうち、正しいものはク である。 したがって、xの整数部分がケ とわかる。 これと①より. クケとなる。 となる。 〔3〕 aを定数とする。放物線y=-xx+7 ① について次の0~④のうち,正しいものはア し、解答の順序は問わない。 をとり また、 ケコ 放物線①は上に凸である。 ①①は下に凸である。 -1 Sasにおける放物線① の頂点のy座標は、m カキ ーをとる。 ク オ このとき最大値・ (4) 放物線①は軸と共有点をもたない。 放物線①は軸と共有点を1つだけもつ。 ④ 放物線①は軸と共有点を2つもつ。 COA= に (1) AB-7.BC=5,CA=4√2 の△ABCについて 41 さらに, sin B siny sing である。 さらに、 オ のとき、 放物線 ① は、放物線y=-xxのグラフをx軸方向に サ だけ平行移動したものとなる。 軸方向に sin sina である。 7 1 について考える。 と ク ケ である。 また、 外接円の半径は カ キ コサ である。 シス ウ のとき最小エ 17 (2) AB4BC=7. CA5の△ABCの辺BC上にBD=3となる点Dをとる。 ∠BAD=∠CAD=8. <ADBァとする。このとき。 である。ただ ウ オ エ である。

回答募集中 回答数: 0