学年

質問の種類

物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

... 79.〈音波の性質> 図1上図のように原点Oにスピーカーを置き, 一定の振幅で, 一定の振動数の音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上 (x>0) の各点で圧力の時間変化を測定する。 ある時刻において,x軸上(x>0)の点P付近の空気の圧力か xの関数として調べたところ、 図1下図のグラフのようになっ た。 ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力をする。圧力が最大値をとる x=x から, 次に最大値をとる x=x までのxの区間を8等分 X1,X2, ...,と順にx座標を定める スピーカー X3 X4 X5 Poss XoX1 X2 点P付近の拡大図 図1 から x までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力の時間変化を調べたところ、図2のグ P4 ラフのようになった。 圧力が最大値をとる時刻t=to から, 次に最大値をとる時刻t=ts までの1周期を8等分した、 た,..., と順に時刻を定める。 からまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように,原点Oから見て点Pより遠い側の位置に,x軸 に対して垂直に反射板を置くと,圧力が時間とともに変わらず常 po となる点がx軸上に等間隔に並んだ。 (3)これらの隣接する点の間隔dはいくらか。なお,音波の速さ をcとする。 Pos ta ta ts to tit tet ts t 図2 図3 反射板 (4) (3)の状態から気温が上昇したところ, (3) で求めたdは増加した。 その理由を説明せよ。

回答募集中 回答数: 0
生物 高校生

リードα 53 (1)(2)についてなのですが、(1)はなぜe,f両方当てはまるのですか?また、(2)はどちらも当てはまらない理由がわからないので教えていただきたいです🙇‍♀️ どなたかすみませんがよろしくお願いします🙇‍♀️

リードC 53 自律神経系 自律神経系について,以下の問いに答えよ。 (1)交感神経についての記述として適切なものを, (a) ~ (h) の中からすべて選べ。 (a) 間脳から出るものがある。 (c) 延髄から出るものがある。 (b) 中脳から出るものがある。 (d) 脊髄から出るものがある。 (e)脊髄から出たニューロンの長く伸びた突起が副腎に到達し,直接副腎の細胞に 情報を伝達する。 (f)脊髄から出たニューロンの長く伸びた突起と, 心臓との間に別のニューロンが 介在し, 情報を伝達する。 (g) 気管支に分布する。 (h) 皮膚の立毛筋に分布する。 (2) 副交感神経についての記述として適切なものを, (1)の選択肢の中からすべて選べ。 (3) 以下の(a)~(e)の記述のうち, 誤っているものを1つ選べ。 (a) 多くの器官は交感神経と副交感神経が分布しており、二重神経支配を受けてい る。 (b) 交感神経は瞳孔を拡張させ, 心拍数を増加し,顔面の血管を収縮させる。 (c) 副交感神経は胃腸のぜん動運動を抑え、消化を抑制する。 (d) 発汗は交感神経のはたらきで促進する。 (e) 副交感神経は気管支を収縮させ, 血圧を下げる。 [20 北里大 改]

回答募集中 回答数: 0
物理 高校生

(2)について質問です 2枚目が解答なのですが、オレンジの線を引いてるところが分かりません。なぜmは同じになるといいきれるのですか??

(カ) 354 マイケルソン干渉計■ 図のように,光源 Sを出た波長の単色光が, Sから距離 Ls にある 半透鏡Hにより上方への反射光と右方への透過光の光源S 2つに分けられる。 反射光は,Hから距離 LAに固 定された鏡Aで反射して同じ経路をもどり,一部が Hを透過してHから距離 LD 離れた検出器Dに到達 する。 一方, Sを出てHを右方へ透過した光は, 鏡 D [兵庫県大 改] 347 鏡ATE LA 鏡 B 半透鏡H -LS- -LB- AL AL LD 検出器 D Bで反射して同じ経路をもどり、一部がHで反射してDに到達する。 これら2つの光が 干渉する。 初めのHからBまでの距離は LB (LB>LA) で, Bは左右に動かすことができ る。Hの厚さは無視でき, 鏡および半透鏡において光の位相は変わらないものとする。 X Bを少しずつHに近づけるとDで検出される光の強さは単調に増加し, ALだけ動い たとき,最大となった。 逆に, Bを少しずつHから遠ざけると光の強さは単調に減少 し,初めの位置から 4L だけ動いたとき最小となった。 波長をALで表せ。 Bを初めの位置にもどし, 波長を入から少しずつ大きくしていく。 Dで検出される 光の強さは単調に増加し,+4のとき最大となった。 LB-L』を入とで表せ。 次に,光の波長を入にもどし, Bを初めの位置から動かして, Hからの距離がL』 に 等しくなるまで少しずつ動かした。 この間のDで検出される光の強さを観測すると, 250 回最小値をとることがわかった。 このとき,(2)における入と 4入の比を求め よ。 入 [16 新潟大 改] ヒント 353(2)隣りあう2つのスリットを通る光の経路差= (回折後の経路差) (入射前の経路差) 354 (3)250 回目の最小値をとったときの,HとBの距離はLa+24Lであり,最小値は 44L ご とに現れる。

回答募集中 回答数: 0
数学 高校生

(3)(ii)で、黄色マーカーのところで、 ・3s^2-2s-3はどこからきたのか ・9s^2+14s+1で割るとわかるのはなぜか がわかりません。教えてください。

【5】 a b を実数とする。xについての関数f(x)。g(x)を次のように定める. f(x)=xx-x+α.g(x)=-x+bx+4 x=f(x)は極小値を, g(x)は極大値をもち,これらの値は一致する. 次の問いに 答えよ. (1) tの値を求めよ. (2) a. bの値を求めよ. (3) 関数h(x) を次のように定める。 「f(x) (x<t のとき) h(x)= g(x)(xtのとき) (i) h(x) の最大値を求めよ. () 曲線y=h(x) をCとし, Cと異なる2点で接する直線を1とする.Cと1の2 である. (3)i) (1)のf(x)の増減表より, h(x)はxで増加し、 x < 1 で減 少する. また, 曲線y=g(x)は軸が直線x=1で上に凸の放物線であるか ら.h(x)はx≧1で減少する. よって、 (x)の増減は下表のようになる. ... 1 h(x) 15 増減表よりh(x)はx=132 のとき最大値 つの接点のx座標を求めよ. (40点) 考え方 (1) f'(x) を計算し、f(x)の増減を調べましょう. (2)(1)をもとに,f(x)の極小値を求めましょう。また,g(x)は2次関数ですから,平方完成をしてg(x)の極大値を 求めましょう。g(x) の極大値は微分法を用いて求めることもできます. (3)i) (1) (2) をもとにh(x) の増減を調べましょう. (曲線y=f(x)(x<t) 上の点 (s, f(s)) における接線が曲線y=g(x) (x≧t)に接する条件を考えましょう。曲線 y=f(x) (x<t) 上の点 (s, f(s)) における接線が,y=g(x)(x≧t)上の点(u, g(u)) における接線と一致すること を利用する方法もあります。 解答】 f(x)=xx-x+α より f'(x) = 3x²-2x-1=(3x+1)(x-1) なるので, f(x) の増減は下表のようになる. 1 x .... .... 1 ... f'(x) + 0 0 + f(x) 7 って, f(x) はx=1で極小値をもつので る. t=1 より, f(x) の極小値は f(1)=1'-1'-1+a=a-1 3. また (x)=(x-2/28)2 +12+4 (答) (1/3)=(-1)-(1)-(3)-(-1)+6 -1-3+9+162-167 をとる. ( Cは下図のようになる。 y=f(x) (8, f(s)) y = g(x) u (uif(w) ...... (答) 三択問題 6.2のとき。 a-1と +4の値はともに5である. 4 xにつ +2 (x) N for = f(s)=35-28-1 この接線は(vif(a))も通る。 y=(3s2-2s-1)(x-s) + s-s-s+ 6 図より Cとはx=s, u(s<1<u) で接するとしてよい.s<1より, I の方程式は y=f(s)(x-s)+f(s) (8,ρ(よ))における接線の方程式 より(8,t(s)の傾き Cのx <1の部分はy=f(x) で 表されるので,y=f(x)のグラ フの接線を求めている すなわち y=(3s2-2s-1)x - 2s + s' + 6 である. よって, C と1がx=u (u> 1) で接する条件は,x>1のとき h(x)=g(x) であることに注意すると (3s2-2s-1)x-2s' + s' + 6 = x + 2x + 4 g(x) x2+ (3s2-2s-3)x - 2s' + s + 2 = 0 が重解をもつことである. このとき ← ・接線と(2)の接点は いてある。 ………….. ① g()と(352-25-32-4(-2s'+s°+2)=0←①の判別式をDとするとD-O「①が重解をもつ①の判 「別式が0である」ことと、 ① が 重解をもつとき、その解は 3s22s-3 u = - 2 すなわち 金額をもつときax+bx+c=0の2解をdBdXB (35-25-3) = b 2-1 x+B= a+d=- であることを用いた、 (x)はx= 11/10で極大値+4をもつよって 曲線y=g(x) は上に凸の放物線 であるから, g(x) は頂点におい 極大となる. すなわち 解説 1° (別解) =1 b2 +4=a-1 4 a=6,b=2 -②数 17- ......(答) 201= ②数 18-

未解決 回答数: 0
数学 高校生

確率の最大値の問題なのですが2つの問題どちらも全くわからないので解説して頂きたいです😭🙏 お願いします🙇‍♀️

11 確率の最大値 きれているのが致した。頑をを取り出すとき、2枚だけが 号で残りの(k-2)枚はすべて異なる番号が書かれている確率をp (k) とする. (1) p(k+1) p(k) (4≦k≦9) を求めよ. つず A ある 福岡教大/一部省略) (2) (k) (4≦k≦10) が最大となるkを求めよ. 確率の最大値は隣どうしを比較 確率 (k) の中で最大の値 (または最大値を与えるk) を求める 問題では、隣どうし[p(k)とか(k+1)] を比較して増加する [p(k) p (k+1)]ようなkの範囲を求 (k) (k+1)の大小を比較すればよいのであるが,p(k)とか(k+1)は似た形をしているの で 力(k+1) p(k) を計算すると約分されて式が簡単になることが多い。 p(k+1) p(k) ≧ 1⇔ p(k) ≤ p (k+1) である. 解答 (1) 30枚からk枚 (4≦k≦10) を取り出す取り出し方は 30Ck通りあり,これ らは同様に確からしい.このうちで題意を満たすものは 同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方がC2 通り, 異なる番号 の (k-2)枚について番号の選び方がCk-2 通りでそれを1つ決めると色の選び 方が3k-2通りある. 10-3-9Ck-2-3-2 よって, p(k)= 30Ck p(k+1) 9Ck-1-3k-1 p(k) 30Ck 10-3 を約分 30Ck+1 9Ck-2-3-2 (k+1)! (29-k)! 30! 9! (k-2)! (11-k)! -.3 ←順に, 30! k! (30-k)! (k-1)! (10-k)! 9! 3(k+1) (11-k) 1 30Ck+1 最後の3は3-1と3-2 を約分. 1 30Ck, 9Ck-1, 9Ck-2 (k-1) (30-k) (2) p(k) sp(k+1) s )= p(k+1) p(k) ≧1⇔ 3(k+1)(11-k -≧1 p(k)>0, p(k+1)>0 (k-1) (30-k) ① は を D ⇔3(k+1)(11-k) ≧ (k-1)(30-k)⇔k(2k+1)≦63 5.(2·5+1)<63<6·(2・6+1) であるから, ①を満たすにはk=4,5で①の等 kは4~9の整数 号は成立しない。 よって p(4)<p(5)<p(6), p(6)>p(7)>p(8) >p (9)>p(10) となり, p(k) が最大となるんは 6. 11 演習題 (解答はp.52) 当たりくじ2本を含む5本のくじがある. このくじを1本引いて, 当たりかはずれか を確認したのち, もとに戻す試行をT とする. 試行Tを当たりくじが3回出るまで繰り 返すとき, ちょうど回目で終わる確率をp (n) とする. (1) 試行Tを5回繰り返したとき, 当たりが2回である確率を求めよ. (2) n≧3として, p(n) を求めよ. (3) p(n)が最大となるnを求めよ. (芝浦工大) n回目が3回目の当たり なので,それまでに当た りは2回(3)は例題と 同じ手法を使う. 44 る 3

未解決 回答数: 1