学年

質問の種類

数学 高校生

四角で囲った部分の△ACDはなぜこのような式になるのでしょうか。△ABCは対応してる辺がわかるので公式のb^2=c^2+a^2-2cacosBに当てはめればいいのでわかるのですがアルファベットがABC以外でわからないときはどうやって見分ければ良いのでしょうか。

0 20 15 10 円に内接する四角形 円に内接する四角形の面積を求めてみよう。 問 14 例題 5 方針 解 (応用 円に内接する四角形 ABCD において AB=2√2,BC=3, CD = √2, ∠ABC = 45° とするとき, AD を求めよ。 また,四角形ABCDの面積Sを求めよ。 すなわち これを解いて x>0 より また = 三角形への応用 円に内接する四角形の面積 A B 7 2 2√2 45° 四角形を2つの三角形に分けて考える。 どのように分ければよいか。 対角線AC を引き, △ABCに余弦定理を用いると AC2 = (2√2)+32-2・2√2・3cos 45° = 8+9-12=5 AC 0 より AC = √5 四角形ABCD は円に内接するから ∠ADC = 180°-45°= 135° AD = x として, △ACD に余弦定理を用いると (√5)²=x²+(√2-2・x・√2 cos 135° x2+2x-3=0 x=1, -3 AD = 1 S = △ABC + △ACD =1/12 ・2√/23sin45°+/1/2 ・1.√2 sin 135° 3 C 円に内接する四角形ABCD において, AB = 5, BC = 4, CD = 4, ∠ABC = 60° とするとき, AD を求めよ。 また,四角形ABCDの面積Sを求めよ。 P.164 練習問題 4 157 4章 図形と計量

未解決 回答数: 1
数学 高校生

2番解説してください!

240 第4章 図形と計量 考え方 (1) 正弦定理 例題 123 正弦と余弦の融合 8 △ABCにおいて13 sin A sin B (1) cos A, cos B, cos C を求めよ. (2) A,B,C のうち, 2番目に大きい角は30°より大きいことを示せ 解答 Focus 注> necos A = b sin B sin A a: bic=sin sin B: sin C となることを利用する. (2) 2番目に大きい角は、2番目に長い辺の材類である。(辺と角の大小川県) a より (1) 正弦定理 sin C sin B sin A a:b:c=sinA : sin B: sin C 条件より, sin A: sin B: sinC=13:8:7 a:b:c=13:8:7 したがって, cos B= となり, a=13k, b=8k,c=7k(k>0) とおける.aa:bic が定まる よって、余弦定理より, cos C= cos B= だから, よって, 11 22 13 26' 222=484, 6²+c²-a²_(8k)²+(7k)²-(13k)² 2bc 2.8k 7k c²+ a² − b² _ (7k)²+(13k)²-(8k) ² 11 - 2ca 2.7k 13k sin C 13 ¸a²+ b² −c² _ (13k)²+(8k)²—(7k)² __ 23 = OST 26 082.13k-8k 2ab A (2) (1)より,a>b>cであるから、2番目に大きい角は Bである. = 7 sin C DELA ARSA 正弦定理 C =2R より, cos B < cos 30° B> 30° cos 30°: これより, a:b: が成り立っている。 PORTS = (13√3)=507 /3 13√3 2 26 0e=" 2 == a sin A sin B sin C a:b:c=sinA: sin B: sin C で, 00-808- ASEANCA より、 けで大きさは定ま ない。この比率を とおく. A ~8k 7k B 13k 辺と角の大小関係 (p.425 参照) y -1 例題 3 (1 考えた 0 [11 30% cos B cos3 sin B sin C sin=2R より a=2RsinA,6=2Rsin B, c=2RsinC 解

未解決 回答数: 1
数学 高校生

解説OH🟰Kにしてますが他のものだと答え変わってきませんか? 私は辺の比からOHとBHを√2K、CH=√6Kと置きました

用いて、 求める CD +6 ECT 0 24 底面が (1) △OBH において, BH:OH = 1:1 より BH-1 A OH △OCH において, CH: OH =√3:1 より CH-√3 A OH OH = k(k>0) とおくと, BH=k, CH=√3k と表されるから、 ▲HBC において, 余弦定理により (√21) ²= k²+(√/3 k)2-2-k√3 kcos 150° 21=k²+3k² +3k² k2=3 k>0 より k=√3 よって BH=3, CH = 33, OH = 13 AH OHA=90°の直角二等辺三角形であるから 24 (1) BH OH CH OH CH= I OH = √ (2) SOAH = 45° とする このとき AH = BH = B Point o 難易度 ア , 9 すい 右の図のような四角錐 O-ABCD がある。 底面 ABCD は, 」各2 AD//BCの台形であり, 点Oから底面ABCDに下ろした垂線は, 対角線 AC と BD の交点Hを通る。このとき,BC=√21, ∠OBH = 45°、∠OCH = 30°, ∠BHC = 150° とする。 A 3つの角の大きさが45℃ 45℃ 90° の直角三角形の辺の比は ya 1:2:√3 オ 1:1:√2 3つの角の大きさが30℃ 90% 60° の直角三角形の辺の比は 目標解答時間 カ √2/45° 1 45° 1 1 であることを用いると, である。 (B 与えられた辺や角と求める辺や 角を合わせて, 3辺と1角のとき 27 余弦定理を用いる。 2 130° 12分 A √3 ve the 60% 1 B 図形と計量 H (45% 150° D /21 25 30 C (

未解決 回答数: 0
数学 高校生

数1の内容です。 cosB≧0であるからcosB=と展開されて いくのですが、 なぜcosB≧0であると後のようになるのでしょうか

= Cl PR ② 131 とする。 2abc ²+0²-8² るから、 で割ると c²+0²-1² 「△ABCにおいて,面積をS で表す。 次のものを求めよ。 ただし, (2) は鈍角三角形ではないもの PR (1) 余弦定理により cos B= sin B>0 であるから (1)a=11,6=7,c=6 のとき cos B, S (2) a=√2.c=√6,S=√2 のとき b,C RD 62+112-72 2・6・11 sinB=√1-cos2 B: = 余弦定理により 2 ゆえに √6 △ABC は鈍角三角形ではないから 0°<B≦90° よって, cos B≧0 であるから cos B=√1-sin²B= sin B= よって = よって S=12casinB=121・6・11・2/10 -=6/10 (2) S=1/2 casinB から √2=12√6-√2 sin B ゆえに よって 別解 (後半) cos C= C=90° 108 2.6.11 √2 = 2√2+2sin C sinC=1 C=90° 9 11 6² =(√√ 6 )² + (√√ 2)²-2·√√6·√2. 60 であるから b=2 また、S=1/12 absinC から 2ab \2 = 2√10 11 2 2 1 √ ₁ - ( 1²6 )² = √ / 3 第4章 図形と計量 ― 147 300 200 (1 √√3 = =4 a²+b²-c²_(√2)² +2²-(√6)²=0 = 2√2.2 √11²-9² 11 √(11+9)(11-9) √40 11 11 別解 (1) (後半) ヘロンの公式 (本冊 p.211) を用いると 2s=11+7+6 から s=12 よって S=√12.1.5.6 =6√10 +√√1-4-√√ 6 ←62=6+2-4=4 4章 PP inf. α=√2,b=2, c=√√√6 ²5 a² + b²=c² C= が成り立つことに気づけ ば、 三平方の定理から C=90° がわかる。

未解決 回答数: 0