学年

質問の種類

数学 高校生

数IIの三角関数の合成の利用の問題です。 (2)なのですが、解説を見ても理解ができなかったため、解説をお願いします。

(1) sin-cos0 = 1 002 のとき,次の方程式、不等式を解け。 例題 163 三角関数の方程式・不等式 〔6〕・・・ 合成の利用 **44 (2) 2sin(+) 6 +2cos√3 思考プロセス Action>> a sin0+ bcos, r sin(0+α) 既知の問題に帰着 サインとコサインを含む式 (1) sin-cos 0=1=> 合成 サインのみの式 sin (0- = 1 (2) まず 0 のみの式にしてみる。 を含む式… 6 (1) sine-cos =√√2 sin(0) であるから,与式は y 例題 O 162 sin(0) = 1 √2 例題 148 Π 6- =α とおくと,0≦02 より AUGLS7 ≤a< π 4 4 4 URSS π 3 この範囲で sinα = を解くと a = 2 TO π 3 6- π より 4 4 例題 162 (2) 2 = Π 4 " 2sin(+)+2cos= = √3 sin+3cos cose +2 cos COSO) + 2070200 0 = πT " 5809 π 44 π 2 3 sino + 2 2 12 よって, 与式は = = 2/3 sin (0+) JT 2√3 sin (0+)2√3 b5 sin (0+1) ≥ 1/1 2007 例題 148 0+ 8 + 1 = Π π =α とおくと,0≦02 より 3 3 1/12 Ra この範囲でsina 1/2 を解くと M 5 π, 3 6 1 sa≤or, 1x ≤a< 3 13 6 元 T Π T 5 13 TC 7 π, 3 < 6 6 TC 3 31 したがって TC 0≤0≤ 11 29 1630≦2のとき、次の方程式、不等式を解け。 (1) 3 sine-cos = -1 π P 023080 Action a Wy=sind y=2sin サイン& → 050 川 y=s X Π 4 よっ L 三角関数の合成 УА P 3 12 C 2.3 π У 3 ¦ √3 x F 13 1x

回答募集中 回答数: 0
英語 高校生

過去問の全15問の解説を宜しければして頂きたいです!!お願い致します。

3 3 [] [] ーロコ 2023 推薦 公募制推薦入試A・B 【適性検査】 文系学部 公募制推薦入試 A・B 文系学部 Ⅰ 次の英文の 選びなさい。 (1) This cheese is made ( a. about b. from c. one d. to b. between c. by d. of (2) Sally is very good () teaching tennis: she is one of the best coaches in the tennis school (3)( a. Economics b. Education C History d. Politics (4) English is a ( it. a. careless b. major c. partial d. regional ) is the area of study that is concerned with teaching and learning. (9) My father ( swimming instead. a. ought to b. should c. used to d. will a 内に入れるのにもっとも適当なものをa~dの中から1つ so as b so that C such as d. such that 00) Nowadays, millions of robots are used in various fields ( manufacture and the health industry b. in case goat's milk. n からできている C unless d. whether ) international language: people around the world speak 01) Daniel could not dance, but he pretended ( lessons. -1- ) play baseball when he was young. Now, he enjoys a, almost nothing b. as far as I know c. quite wrong d. what is called 12 Student A: Do you think you can use dictionaries in Ms. Benson's exam? ). I intend use this one. Student B: Yes, ( ) car -3- ) he had taken dance 推 (5) According to recent research, female elephants ( in the family. a. care b c. play d. sing (6) This airline allows their passengers ( them. a. of taking on b. take on c. taken on d. to take on 推 nurse (7) The sign says that () from here, that rock looks like a lion. a saw b. see C seeing d. seen (13) a. however b. wherever c. whichever d. whoever (8) Here are two different kinds of cake. You can choose ( want. I'll have the other. Mr. Tanaka ( a. Bye, for now. b. How do you do? c. It's been nice talking with you. d. What do you do? -21 00 A: I like Japanese culture. (15) ) two pieces of baggage with Ms. Davis: Excuse me. Are you Mr. Tanaka? I'm Annabel Davis. Nice to meet you. ) an important ) I'm glad to meet you. B:( ) I think Kabuki is wonderful. a. I am, too. b. Neither do I. c. So do L d. That's unlikely. c. one d. too Server: Would you like coffee or tea? Customer Actually, I'd like ( a both b, either ) one you ). Tea with my meal and coffee after

回答募集中 回答数: 0
英語 高校生

日本語訳をお願いします 自分の読みが合ってるか不安なので、、、

Hand of God of the lat 不誠実な Maradona, a famous soccer player, marked one of the most dishonest goals in World Cup 1 次の文章を読んで、下の問いに答えなさい。 Pirtray history in 1986. It's known a the "Hand of God." Argentina wasn't a one-man team at especially true in the game the tournament, but Maradona made it look like it was. That was BONSDAL A against England when he scored one of the game's greatest goals as well as one of the most わしい 5 questionable. He was one of the best players in the history of the game, but to be the best of all, he 2 ( clear) needed to win the World Cup. Maradona could handle the pressure. Perhaps, no player has ever controlled a World Cup as much as Maradona did in 1986. That was clear at the stadium. Argentina ( fight ) against England, and this was the match that made Maradona 10 famous [b ] another way. Early in the second half, Maradona marked his first goal. The England defender blocked a pass and kicked the ball back [c] the goalkeeper. But Maradona had made his way into the penalty area after the first attack, rose up and got [d] the ball before the goalkeeper. The ball went into the net. Replays showed Maradona used his left hand, not his head, to score. 15 After the match, he explained the goal was made "a little with the head of Maradona and a little with the hand of God."

回答募集中 回答数: 0
数学 高校生

なんでlimを求めてるのかわからないです。あと、どういう時に求めればいいのかも教えて欲しいです。

基礎問 150 82 媒介変数で表された関数のグラフ 第5章 微分法 ay平面上で媒介変数日を用いて れる曲線C上の点Pにおける接線がx軸の正方向と (1) Cのグラフをかけ. (1) 00<2πのとき, dr dy -=1-cos0, de do 64で求めたdr (2) 直線とx軸の正方向とのなす角をaとすると(ただし, の直線の傾きは tanα で表せます. (数学ⅡI・B58) lim 0+0 dx (1) 媒介変数で表された関数の微分については 64 で学びました。 ここでは,それを用いてグラフをかく練習をしましょう。最大の ヤマは増減表のかき方です。 解答の中では,スペースの関係上、 をそのまま (途中を省略して)使ってあります。 また, dr よって, グラフは上に凸. dy また,dx -=0 より dy=lim lim dy 0-2-0 dx = sino より 1 (1-cos0)² =lim 解答 1-cos0>0 だから, 増減は右表のよう になる.また, 0+0 1-cos²0 -<0 sin0(1+cos0 ) x=0-sin0 y=1-cos 0 (2) 点Pの座標を求めよ。 0 1+cost_ 0 -=lim sin(2n+t) -0 1-cos (27+t) dy sino dx sin0=0 ∴.0=π (0<<2π より ) -= +00 1-cos 0 0 to sino 0-2=t とおくと, 02-0のとき, t→ - 0 IC (0≤0≤2π) ** 昔の角をなすとき、 dy dx y 20 0 0 -<-<4) + 2そ 注参照 [64 π 150 (5) π + 0 2 :: ... 270 π 6 =lim Sint dy_ do dx dx do だから (0,0), (2π, 0) において曲線Cは それぞれ直線 = 0, π=2πに接する。 以上のことより, グラフは右図 90 と2のときをはずして微分しているのは、この2つの [注] 対して, dx -=0 となるからです。 do dy <0+ --o-cost よって, 演習問題 82 t to sint =lim dy lim 0+0 dx¹ (2)0<6<2πにおいて ポイント その影響で, 00 と2のときのグラフの様子がわからないので, dy lim を調べてあるというわけです。 0-2-0 dx sino π = tan 7 1- cos 0 6 √√3 sin 0+cos0=12sin 1+cost t dx は -≠0 のときに使うことができる式です。 do π 13л -< 6 6 P(21 12 3/4 より ot=5 π5 0+ 6 √3 3 2' 2 2. 傾きは tan √3 sin0=1-cos A 2 sin(8+4)=1 ある直線がx軸の正方向とαの角をなすとき (一匹<a<△)で表せる 151 xy平面上で媒介変数tを用いて, x=√3-1 y=t³-t (−1 <t<1) で 表される曲線上の点P(x,y) における接線の傾きが0になるとき, 点Pの座標を求めよ. 第5章

回答募集中 回答数: 0
物理 高校生

⑵の解説のなぜP1とP2 が図のように振動するのかがわかりません。教えてください

-40 -43 0.98~101 EN (開 r [解説] √=fR V 考察 B5⑤ 158 (1) 考察A: 3③ 考察 C⑧ (2) 4 (3) 3 注目する。 指針 初めて見る実験題材は,発生する現象を問題文から読み取るこ とが重要。 この問題は共鳴の問題であるから,定在波の腹節の位置に 1000≧ 73346 1000 (2) 観察・実験Ⅰ・Ⅱより,パイプ おんさ P1,P2 から発生する音波 の振動数はいずれも1000 Hz 以下 であるから、その波長は 0.34m 340 以上である。 したがって, P1, P2 入 270.34 (1) 考察 A: パイプおんさ P1, P2 を同時に鳴らせたとき, 1 パイプおんさ Pi. P2はU 秒間のうなりの回数は1回未満であったことは, 字型の加工部分が共通して P1, P2 の振動数の差が1Hz 未満であることを示いるため, 発注する音波の している。 よって ③ 振動数は一致している。 Pi 考察 B: パイプおんさ Pi の下端(開口部)を手でふさい で閉管にしたとき共鳴音が大きくなったことは, 下端(開口部) 付近が定在波の節の位置であること を示している。 よって, ⑤ 考察 C : パイプおんさP2 の下端(開口部) を手でふさい で閉管にしたとき,共鳴音が小さくなったことは、 下端(開口部) 付近が定在波の腹の位置であること を示している。よって, ⑧ 3 の長さの差16cmの間に一波長 4 2.30** 23cm 251 P1 P2 WALIT 158) センサー44 センサー 45 16 cm 開口端補正 が含まれている可能性はないので、 気柱内に生じる定在波は図のよう になる。 開口端補正を1.0cm 程 度と仮定しているので,発生する 音波の波長は -x3=16 入 = (16+1.0)×4=68[cm]=0.68〔m〕 7:16/1/u=faより P1 のおおよその振動数は, 340 21.3cm [f= +=500[Hz] ④ 0.68 70,21m (3) 下端(開口部)を手でふさいだときに音量が大きくなる位置 (3) 20.4は、定在波の節の位置である。その位置はパイプおんさ P1 をみたしていたより=波長(34 cm)程度長い位置である。よって,③ 39cm (音波変位で 表している) ^ 4 p が節だと ちゃんと共鳴して 音大きくなる 16cm+1g 1.7-4 0.0 0.8 23cml 134c 各8cm t = (C sirve (2)より 7=6 132

回答募集中 回答数: 0
数学 中学生

🚨🚨至急🚨🚨中学3年生  教科書P63〜65にある【コピー用紙はどんな長方形?】のやつを描かなければならないのですがわかりません。。添付している写真を埋めていただきたいです。❌のところは書かなくて大丈夫です!よろしくお願いします。

コピー用紙はどんな長方形? (教科書 P.63~65) B5判のコピー用紙の, 短い辺と長い辺の長さの比を 調べてみましょう。 A D ● B5判の紙ABCD を下のように折ってみましょう。どんなことがわかるでしょうか。 2 D A [E] E B ③ 下の図の正方形EBCB'で, BC=1として, CEの長さを 求めてみましょう。 -自分の解き方 D B C C B C B ②で調べたことから, B5判の紙の, 短い辺と長い辺の長さの比 BC: CDを求めるには どうしたらよいか、話し合ってみましょう。 B 85 B6 友だちの解き方 84 ④ B5判のコピー用紙の短い辺と長い辺の比はどうなりますか。 ⑤ 学習をふり返ってまとめをしましょう。 学習感想 ⑥ B5判の紙を2等分するように半分に切ると、 B6判の紙になります。 B6判の紙の, 短い辺と 長い辺の長さの比を求めてみましょう。 ⑦ 2枚のB5判の紙を、長い辺が重なるように合わせると B4判の紙になります。 B4判の紙の短い辺と長い辺の 比を求めてみましょう。 B5 B5 B6 B5

回答募集中 回答数: 0