学年

質問の種類

物理 高校生

(3)tanθ=ma/mgになるのはなぜですか?

基本例題33 電車の中の単振り子 基本問題232 234 長さLの糸の一端に質量mのおもりをつけて,これを電車の天井につるして単振り子 とする。 重力加速度の大きさをg として 次の各問に答えよ。 (1) 電車が水平方向に速度で走行している状態で, おもりを電車に対して静止させ おもりにはたらくが たとき,糸はどの方向になるか。 Forfashhat (1)の状態で,単振り子を小さく張らせたときの周期はいくらか。 (3) 次に, 図のように, 電車が水平方向に大きさαの 一定の加速度で走行しているとする。おもりが単振 小生も加わる 動の中心にあるときの, 糸と鉛直方向とのなす角を 0 とすると, tan はいくらか。 (4) (3)での単振り子の周期を, L, g, a を用いて表せ。 (S) a (1) おもりに慣性力ははたらかな 指針 (1) (2) 電車は等速直線運動をして おり,おもりに慣性力ははたらかない。 したが って,単振り子の運動は、電車が静止している 場合の状況下のものと同じである。 解説 いので,糸は鉛直方向となる。 L (2) 単振り子の周期Tは, T=2π g に a (3) (4) 電車は等加速度直線運動をしており、 電 車内から見ると, おもりには糸の張力 S, 重力 mg, 慣性力 maがはた らく。これらのつりあう 位置が,単振動の中心と なる。 重力と慣性力の合 力は鉛直方向から 0傾 いた方向になり見かけ の重力mg'がその方向 にはたらくとみなせる。 ma mg' mg (3)糸の張力 S, 重力 mg, 慣性力maの3力が つりあう位置が単振動の中心となる。 ma a tan0= mg g (4) 見かけの重力加速度の大きさ g' は, g'=√√g²+a² 求める周期をT' とする。 T' は, (2) の T の式 でg を g′に置き換えて求められる。 =2 L T = 2x√1 = 2π√ √ √ g² + a² LE 9. 単振動 113

回答募集中 回答数: 0
物理 高校生

θが最大の時に糸を切ったとしたら、おもりはどの方向に自由落下するんですか?

出題パターン 単振り子の周期公式 長さの軽い糸の一端に質量mのおもりを つけ、他端を天井に取りつける。 糸が鉛直になるおもりの位置を原点として、 おもりの通る円弧に沿って軸を定める。 おも りを原点から微小変位させて静かに放したと ころおもりは単振動した。 この単振動の周期 Tを求めよ。 微小角 0 に対する近似 sin99 を用いてもよい。 重力加速度の大きさを”とする。 解答のポイント! まつく m 円弧に沿った方向の加速度をαとして、 座標 xにおける運動方程式を立てる。 与えられた近似と弧長公式 (弧長) (半径)x (中心角)を用いると, (ma=-kx/ の形にもっていける。 解法 この形をつくる!! 円弧状のx軸が与えられている。 単振動の解法3ステップで解く。 STEP1 STEP2 振動中心はつりあいの位置 x = 0 の点。 折り返し点は放した点。 STEP3 図9-20のように, 座標 xでの糸 の傾きを 0 とすると, 弧長公式により, (弧長x) = (半径1) × ( 中心角0 ) 張力S ① +x向きの加速度をαとして, 運動方程式は, ma=mg sin O 0 弧長 mg (近似より) = - mg ○(①) mg xx よって運動方程式の形より, Im 周期T=2 =2 mg g mg 図9-20 し x=lo (この周期は」とのみで決まりや振れ幅にはよらない。) STAGE 09 単振動 1

回答募集中 回答数: 0
物理 高校生

⑶ 時間を求めるために、周期を使うことなんて思いつきません。答えを見ても、イマイチ理解できてないです。 他に解き方ってないんですか?💦

必解 52. 2本のばねによる単振動〉 A B mmm mmm 0 図のように, なめらかな水平面上に質量mの物体Pが同 じばね定数をもった2つのばね A, B とばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりαだ けずらしてからはなす。 このとき物体Pは単振動する。 単振動は等速円運動のx軸上への正 射影の運動であるといえる。 時刻 t=0 において, 物体Pはちょうどx座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして. 次の問いに答えよ。 (1) 時刻 t における物体Pの位置xおよび速度vを,等速円運動の角速度 を用いて表せ。 (2)時刻 t において物体Pが位置xにあるときの加速度αを, wとxを用いて表せ。また,2 つのばねAとBから受ける力Fを, kとx を用いて表せ。 (3) 物体Pがx=α に達してから, 初めて原点0を通過するまでの時間 to と, 初めて x=123 を通過するまでの時間を,kmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 Pの位置エネルギーUの最大値とそのときの位置を表せ。 ただし, ω やTを用いないこと (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に, xを横軸にと ってグラフに示せ。 このとき座標軸との交点を, a, kおよびm を用いて表せ。 また, 物 体Pが時間とともに図上をたどる向きを矢印で表せ。 [ 香川大改〕

未解決 回答数: 1