学年

質問の種類

英語 高校生

至急!!私立大学看護学部の過去問です。答えがないため、回答を作って欲しいです!!科目は英語です。

問題番号に対応 効とする。 うち受験票お researchers at the University of Veterinary Medicine in Vienna, Austria, have found. Dogs won't give food to a human, even if that person gave them some food first, and that they would help other dogs that had helped them before. Therefore, the team Previous studies have shown that dogs can recognize cooperative and uncooperative humans, "reciprocal altruism"- that is, doing a good thing in return to a human who had given expected to find that their test subjects would put these two things together and show To start, the team trained a group of 37 dogs to press a button which would activate a them food first. *enclosure with the dispenser, while one of (2) two humans was in a separate enclosure with the button. One would press the button to food dispenser. Then, they put each dog in an would not. Each dog was paired with both humans in give food to the dog, and (4) unhelpful one. turn. After that, the researchers switched over the button and the dispenser. They expected that the dogs would press the button to give food to the helpful human but not to the though the dogs did press the button, they did it just as often when either human had the food dispenser, and even when no human was there at all. "In these kinds of studies (5) [perform / to / dogs / which/ trained / are in a particular behavior for an experiment, they will usually do the behavior a few times as they have simply learned the association between the behavior and getting a reward, and it may be enjoyable for them to do the behavior," said Jim McGetrick, a PhD student at the University of Veterinary Medicine in Vienna who led the research. 身を正しく が本冊子 1番 2 次の英文を読んで下の設問に答えなさい。 (3) giving us some food? Are they a combination of reasons. "It is (6) Why wouldn't our best pals want to help us out by secretly all bad boys and girls? McGetrick believes there is possible that the dogs did not understand enough about the task to realize that only one of the humans was providing them with food," he said. It could also be because they didn't fully understand the button and dispenser system, or because they were too focused on the food to notice whether a particular human was pressing the button or not. "Having said all that, even if they did completely understand the task and were fully attentive to the actions of the humans, there is still a good possibility that they wouldn't have given food back in return," he added. "It could be that providing food to a dog as they do not typically do that in everyday life." After all, humans are the ones who human is something very strange for (7) already have food, from a dog's perspective. why would your pet need to worry about (8) making sure you have enough? However, all the humans in the study were people the dogs didn't know. "It is quite 5

回答募集中 回答数: 0
数学 高校生

数Iの連立不等式の問題です。 (2)なのですが、ノートに書いたように√3を求める際、√1<√3<√4より√3は整数部分が1で、その後小数部分を求めるという方法で解こうと思ったのですが、解き方が分からなくなってしまいましたので、 解説をお願いしたいです。 よろしくお願いします。

例題100 連立不等式 思考プロセス Jx2-6x+5 ≦0 (1) 連立不等式 12x²-11x+120 不等式2x-10x-9 < -3x+2x≦-2x-2 を解け。 * Action 連立不等式の解は、数直線上に表して求めよ 19 127229 ⅡI. それぞれの解を数直線上に図示して, 共通な範囲を求める。 A, B, C を入れると? I. それぞれの不等式を解く。 (2) 式を分ける 不等式 A<B≦C は, 連立不等式 解 (1) x2-6x+5 ≦0 より よって 1≤x≤5 2x-11x+12>0 より x < 3 2 よって 4<x 右の数直線より 求める不等式 の解は (x-1)(x-5)≦0 を解け。 (2x-3)(x-4) > 0 (2x²-10x-9<-3x²+2x |-3x2+2x≦-2x²-2 ①より 5x²-12x-9< 0 (5x+3)(x-3) <0より ② より x-2x-2≧0 x2-2x-2=0 とすると よって、②の解は 1+√3≦x<3 3 1≤x<2 4< x≤5 (2) 2x²-10x-9 <-3x²+2x≤ - 2x² - 2 h 31, x≤1-√3, 1+√√3 ≤ x 右の数直線より、求める不等式 の解は 3 13 2009 ... ... (2) <x<3 x=1±√3 [1-31 350 と同じ意味である。 4 5 1+√3 3 x 2つの不等式の解を 求める 共通な範囲が解である。 A<B≤CA< 21-√32-06 関係は,各々から1を くと-√3, ここで √√3> B≤0 85 の大人 よって厚く - 1/3 ゆえに 1-15-12

回答募集中 回答数: 0
数学 高校生

数Aのさいころの目の最大値・最小値の問題です。 (3)なのですが、教科書の黄色マーカー部分P(BかつC)の求め方が分かりません。 また、ノートの黄色マーカー部分なのですが、 P(B)+P(C)-P(BかつC) はもともとP(BUC)のことを意味しているのでしょうか。 解説を... 続きを読む

231 最小値 さいころを同時に投げるとき、次の確率を求めよ。 目の最大値が4以下となる確率 目の最大値が4, 最小値が2となる確率 条件の言い換え (1) 最大値が4以下 すべて 1, 2, 3,4のいずれかの目が出る。 ②) (1)の考え方では, 「1,1,1,1」 と出て, 最大値1の場合 (2) 目の最大が4となる確率 などが含まれているから, その場合を除く。 「1, 3, 2, 1」 と出て, 最大値3の場合 最大値がんとなる確率は,最大値が以下の確率から(k-1)以下の確率を引け [最大値4 Action>> (3) すべて 2~4の目が出て、 2と4の目が少なくとも1回ずつ出る。 > 最大3以下 目の最大値が4以下であるためには, 4個のさいころ の目がすべて 1,2,3,4のいずれかであればよい。 よって、求める確率は (²4) * = (²/²)* 3 4 (1)-(12/2)=1/16 すべて すべて2,3 求める確率は - (2) 目の最大値が4となるのは, 目の最大値が4以下となる場合から、目の最大値が3以 下となる場合を除いたものである。 ここで、目の最大値が3以下となる確率は よって, 求める確率は (3) 4個のさいころの目が すべて 2,3,4のいずれかである事象をA, 3,4のいずれかである事象をB, 16 81 16 1 175 81 16 1296 (1)-1 のいずれかである事象をCとすると, P(A)-{P(B)+P(C)-P(B∩C)} 4 - ( ²³ )* - {( ² ) * + ( ²³ ) * - ( ² )*)}= = (08/10)710/4+0+ 25 最大4以下 「目の最大値が以下」 や 「目の最小値がk以上」 である確率は求めやすい。 これを用いて (2) を求める。 Point 参照。 3以下 Tex 4個のさいころの目がす べて 1, 2,3のいずれか であればよい。 P(最大値が4) Point.…. さいころの目の最大値・最小値- (1) P(最大値がk)=P(最大値がk以下) -P (最大値がk-1以下 ) (2) P (最小値がk)=P(最小値がk以上) -P (最小値が+1以上) OLA P(最大値が4以下) -P (最大値が3以下) B' ∞ ■ 2314個のさいころを同時に投げるとき次の確率を求めよ。 (1) 目の最小値が4以上となる確率 (2) 目の最小値が4となる確率 (3) 目の最大値が5, 最小値が2となる確率 章 17 いろいろな確率 p.446 問題231

回答募集中 回答数: 0
数学 高校生

数Aの通過点の確率の問題です。 (2)なのですが、なぜ自分が解いた方法が間違っているのか教えてください。 よろしくお願いします。 〈(1)では、4回中1回が東なので、4C1としていたので同じように考えたつもりなのですが、、、〉

例題 230 通過点の確率 右の図のような道路があり, A地点からB地点まで 最短距離で移動する。 ただし,各交差点において東、 北のいずれの進路も進むことができるときは, 東, 1 北に進む確率はともに で, 一方しか進めない 2 きは,確率でその方向に進む。 (1) C地点を通過する確率を求めよ。 (2) D地点を通過する確率を求めよ 思考プロセス 問題を分ける (1) Cを通る確率= 3 A→C→Bの道順の総数 A→Bの道順の総数 (理由) A→Bの道順のうち, 右の図の 1,②の道順となる -(1/2)x1 4 X 15 →Bにおいて, とするのは誤り 確率は ①= ●では2方向に進むことができるが, ●では1方向にしか進むことができない。 となり,確率が異なる。←同様に確からしくない (2) 25 = (1/2)x11 1¹ A A →C ③の確率・・・ 4回の交差点で,東に1回,北に3回となる確率 いずれも2方向に進むことができる。 (2) 右の図の交差点をEとする。 (ア) A→E→Dの順に進む場合 1④ の確率・・・ どの道順でも必ずBにたどり着くから,確率1 (考えなくてよい) (2) Dにたどり着くまでの●の個数で場合分けする。 Action » 複数の交差点を通過する経路の確率は, 進行可能な方向に注意せよ 進むことができる交差点を, A も含めて4か所通過する。 この4か所の交差点で,東に1回、北に3回進むと C 地 点を通過するから, 求める確率は 3 C. (1/2)^(1/1)-1/14 E D その確率は (1) x1=1/6 (イ) A→C→Dの順に進む場合 その確率は, (1) の結果を利用して (ア),(イ)は互いに排反であるから、求める確率は 1 1 3 + 16 8 16 ■(1) C地点に到達するまでに, 東, 北のいずれの方向にも東北のいずれの方向に も進める交差点と東京 たは北にしか進めない交 差点がある。 例題231さ B 4個のさい (1) 目の最 (3) 目の春 × ²/1/12 = 11/12 のプロセス 条件の言 (1) 最大 (2) (1) C 「1. 「1 な 解 (1) C地点を通過した後のこ とは考えなくてもよい。 Acti (3) A E地点を通過するかどう かで場合分けする。 A地点からE地点に進む とき, 東, 北のいずれの 方向にも進める交差点を 4か所通過し、 すべて北 に進む。

回答募集中 回答数: 0
数学 高校生

数Aの通過点の確率の問題です。 黄色マーカー部分なのですが、なぜC地点を通過した後のことは考えなくてもいいと分かるのでしょうか。 解説をお願いします。

例題 230 通過点の確率 右の図のような道路があり, A地点からB地点まで 最短距離で移動する。 ただし、 各交差点において東, 北のいずれの進路も進むことができるときは, 東, 北に進む確率はともに 1/2 で一方しか進めないと きは,確率でその方向に進む。 (1) C地点を通過する確率を求めよ。 (2) D地点を通過する確率を求めよ。 思考プロセス 問題を分ける (1) Cを通る確率 = A→C→Bの道順の総数 A→Bの道順の総数 4 とするのは誤り。 (理由) A→Bの道順のうち、 右の図の①,②の道順となる 8 =(1/2)x 11 確率は =(1/2)x 1 = X 15 ②= ●では2方向に進むことができるが, では1方向にしか進むことができない。 となり,確率が異なる。 ← 同様に確からしくない 4 C 解 (1) C地点に到達するまでに, 東, 北のいずれの方向にも 進むことができる交差点を, A も含めて4か所通過する。 この4か所の交差点で、東に1回 北に3回進むと C 地 点を通過するから、求める確率は 3 ..(/)(/1/2)=1/2 4 D AC →Bにおいて, ③の確率・・・・ 4回の交差点で,東に1回、北に3回となる確率 いずれも2方向に進むことができる。 1④ の確率・・・ どの道順でも必ずBにたどり着くから,確率1(考えなくてよい) (2)Dにたどり着くまでのの個数で場合分けする。 Action » 複数の交差点を通過する経路の確率は,進行可能な方向に注意せよ (SE) A 例題2 4個 (1) 東北のいずれの方向に も進める交差点と, 東ま たは北にしか進めない交 差点がある。 思考プロセス (3) C地点を通過した後のこ 1. * to! T & Fl

回答募集中 回答数: 0
数学 高校生

数Iの連立2元2次方程式の問題です。 (3)で黄色マーカー部分において、なぜ①+②×2という解き方をするのかが分からないので教えてください。(どういう問題でこのような解き方をするのかが分からないです。) また、連立2元2次方程式の問題において(1)-(3)はそれぞれ解き方... 続きを読む

68 例題 90 連立2元2次方程式 次の連立方程式を解け。 fx+y=1 (1) lxy=-6 思考プロセス (3) [x2-5xy=2 |2xy-y² = -1... ② Action » 連立方程式は, 1文字ずつ消去せよ 文字を減らす 連立方程式の基本的な解法の流れ xとyの 連立方程式 x=-2,3 (1) ①より y=1-x ③②に代入すると x-x-6=0 より よって ③に代入すると (2) (3) は, ①,②ともに2次式である。 (2) ①をxについての2次式とみると, 因数分解を 用いて解くことができる。 既知の問題に帰着 (3) ①をx=(yの式) にして②に代入すると, 式は 複雑になる。 「定数項が 0 ならば (2) の因数分解の方法に 帰着できるかもしれない」と考える。 よって (ア) x=-2y... ③ 1文字ずつ消去する x=(yの式)... ・・・・ (*) x=-2のとき x=3のとき したがって y=3, (2)①の左辺を因数分解すると (x+2y)(x-3y) = 0 [x=-2 ③②に代入すると 2-2y-80より ゆえに ③に代入すると y=1-(-2)=3 y=1-3=-2 [x = 3 lv=-2 y=-2,4 y=-2のとき y=4のとき ... 3 x (1-x) = -6 (x-3)(x+2)=0 x=-2y または x=3y [x2-xy-6y2 = 0 lx²-3y²-2y=8 x=-2(-2)=4 x=-2.4=-8 ASRASH (-2y)²-3y^2-2y=8 (x-4)(y+2)=0 だけの方程式 二文 noi10円 ← (*)はxについて解いたま みることができる。 ← ② をy = (xの式)にして 同様。 y を消去し, xだけの 方程式をつくる。 右辺が0である①の が因数分解できること 着目し,xをyの式でま す。(xを消去し,yだけ の2次方程式をつくる (イ) x=3y... ④ のとき ④を②に代入すると (3y)2-3y2-2y=8 6y2-2y-8=0 より (3y-4)(y+1)=0 ゆえに y = -1, ④ に代入すると y = -1 のとき 10 4 3 (ア),(イ)より y= (3) ① + ② ×2より よって のとき- x=-3 [x=-8 (x = 4 ly=-2, lv=4 5 lv=-1, 1 y² 3 ③に代入すると x2-xy-2y2 = 0 (x-2y)(x+y)=0 x = -y または x = 2y 4 3 ゆえに (ア) x=-y... ③ のとき ③②に代入すると より x=3.(-1)=-3 x=3.4.3- /3 3 (3) (ア), (イ)より のとき 4 3 x2-5xy+2(2xy-y) = 0 : 土 x= √3 3 x= 練習 90 次の連立方程式を解け。 fx+y=2 (1) lxy =-1 (2x² - xy = 12 【2xy+y2 = 16 -22-2=-1& 13 3 = + √3 のとき 3 (イ) x = 2y... ④ のとき ④を②に代入すると 4y²-y^2 = -1 3y2 = -1 となり,これを満たす実数yは存在しない。 √3 3 OFERAS TRAD [x = 4 √√3 3 x== y = y = √3 3 (2) 2式の加減により,右辺 の定数が0となるように 変形し, (2) と同様に左辺 の因数分解を考える。 (実数)≧0より Jx2-xy-2y^2=0 √x² + y² = 8 OCT TO p.180 問題

回答募集中 回答数: 0
数学 高校生

数I文字係数の方程式の問題です。 (3)の解説を見たのですが、理解ができなかったので、解説をお願いしたいです。

例題 次のxについての方程式を解け。 (1) x2+(a−2)x-2a=0 (2) ax²-2x-a=0 (3) ax-2ax+a=0 思考プロセス (2),(3)問題文では,単に「方程式」 となっており,2次, 1次方程式とは限らない。 場合に分ける (x2の係数)=0のとき (x2の係数) ≠0のとき 1次方程式を解く 2次方程式を解く (例題82参照) Action » 最高次の係数が文字のときは, 0かどうかで場合分けせよ (1) x2+(a−2)x-2a=0 より (x-2)(x+a)= 0 x=2, -a よって 10 (2)(ア)a=0のとき,この方程式は これを解くと x = 0 (イ) α = 0 のとき, 解の公式により -(-1) ± √(-1)²-a (-a) x= AN (ア), (イ)より a ² +1>0 より,これは解として適する。 α = 0 のとき α = 0 のとき (ア)~ (ウ)より x= la=0のとき a=2のとき -2x = 0 α = 0, 2 のとき = x=0 x= (3) ²x-2ax+α = 0 より a(a−2)x=-a (ア) α = 0 のとき, この方程式は 0.x = 0 よって, すべてのxで成り立つから, 解はすべての実数。 (イ) a=2のとき, この方程式は 0.x = -2 この式は成り立たないから,解はない。( 1 (ウ) α = 0, 2 のとき -2 a- 1± √a² +1 1$ 1± √²+1 Ca a 20 0 = 88 - 1 2-a x²+(a+B)x+αβ=0 (x+α)(x+β)=0 a=0のとき, 与えられ た方程式は1次方程式と なる。 のとき U すべての実数 解なし 08-28- x = _ 1 (²-x) (S 2-a S- 2次方程式 ax2+26′x+c=0 の解は es x= -b'±√√b²-ac a α = 0 の可能性があるか ら、いきなり両辺をαで 割ってはいけない。 x=- a a(a − 2) 3 章 a(a−2) ≠0 より,両辺 をa(a−2) で割って a-2 ROCK JOHAJ 8 2-a 2次関数と2次方程

回答募集中 回答数: 0
英語 高校生

英作文の添削をお願いします。😌

[4] Read the instructions and write a well-organized answer in English. (50 points) Virtual reality (VR)* refers to a high-quality simulation of reality created by a computer. Probably the most famous use for VR so far is gaming. But VR has also been used to improve society in various fields such as education, medicine, and engineering. Describe a single specific way that virtual reality can be used to improve society. Explain your idea in detail in about 100 English words. Notes: Virtual reality (VR)*: VR systems use special glasses that completely cover the user's eyes. These glasses show a very realistic picture of a world created by the computer. In addition, the systems can tell when the user moves their head, arms, and sometimes other body parts. So users can control the action by natural movement. Some systems even let users feel like they are touching things. Thus, VR systems can make users feel like they are really in another world. 〔答案〕 I suggest you to simulation with VR. For example, doctors can practice operation. I have the three reasons. First, VR's display is very real. So doctors can do as if real simulation. Second, every one can make simulation software. If you want add patients information to VR and study how to make software, you can make VR software to yourself. Third, medical professors can use VR simulation in lecture. If they do this, Students who want be surgeon in the future will reduce about operation's anxiety. In this way, VR have a lot of possibilities that useful of medical field. For these reasons, I suggest VR simulations.

回答募集中 回答数: 0