学年

質問の種類

数学 高校生

数B 数列の問題です。練習27を教科書の例題を見ながら途中まで解いてみましたが、ここまで合っているかどうかも、この先の解き方も分かりません。

ここでは、1からnまでの自然数の2乗の和 第2節 いろいろな数列 | 27 Σ k² = 1²+2²+3²+...+n² を求めてみよう。 恒等式(k-1)=3k-3k+1 を利用して考える。 に1からnまでを順に代入すると 5 左辺だけ加えると k=1 13-03-3-12-3-1+1 N-03 k=2 23-13-3-22-3.2+1 k=3 3-2°=3.32-3・3+1 + n-(n-1)3 n3-03 k=nn³-(n-1)³=3.n²-3⋅n+1 これらn個の等式の辺々を加えると n=3(1+2+3+......+n") - 3(1+2+3+... +n) +1×n 第1章 数列 練27 (43451 k4-(k-1)" 2 468-660-46-1 を用いて 次の等を証明せよ。 ん {In (n+1)}" k=1 K=2 K=3 100 k=w 13×23×33× 1"-04 4.13 -6.12 +4.1 - 1 2" - 17 = 4.23-6-22-412-1 34-24 = 4.33-63244×3-1 h" - (n-1) = 4 n³ - 6 ∙n² +4. n -1 10 これろん個の等式の辺々を加えると 14- 4 (13 + 2 ³ - 33 + +-6(1+2+32+TH + 4(1727311 th) n すなれる n4 E 4263 kol 2 6号に+4に 1 kol " 15 h4 = 4 2 ₤ 3 - 6 2 1²-4.2 4.(n+1)-1 (CH すなわち n³=3k²-3k+n k=1 k=1 1 n³-3 k²-3n(n+1)+n k = n(n+1) k=1 よって 6k=2n+3n(n+1)-2n k=1 6k=n(n+1)(2n+1) k=1 したがって Σ k² = 1² +2²+3² + ......+n²= n(n+1)(2n+1) k=1 練習等式 -(k-1)^=4k-6k²+4k-1 を用いて, 次の等式を証明 27 せよ。 {1/(n+1)} =1+2+3+…+= {/12n (n+1) *kにどのような値を代入しても成り立つ等式を,kについての恒等式という。 20

解決済み 回答数: 1
地学 高校生

地学基礎です 例題2は①-②をするとマントルの体積が出るのでマントルの体積÷地球の体積(①)×100をすると割合が出てくるかなと考えたのですが合っていますか?あと、①と②の数が大きいせいか、うまく計算ができないので解き方教えてください🙇 例題3は(1)と(2)は多分できまし... 続きを読む

【例題2】 地球において地殻の厚さが無視できるほど薄いとしたとき、 マントルの体積が地球全体の体積に占める割合として最も適切なも のを、次の①~④からひとつ選び、 番号で答えなさい。 ただし地球も核も完全な球体であるとし、 地球の半径を6400km、 グー テンベルク不連続面の深さを2900km とする。 また必要に応じて、 次の値を利用してもよい。 2.92 8.4 2.9324.4 3.5212.3 3.5342.9 6.4240.9 6.43=262.1 ① 76% ② 80% ③ 84% ④ 88% ①季・6400= 640 ②チル・29003= 2900ku TC=3.14 【例題3】 地球の質量は 6.0×1024kg である。 地球を半径 6400kmの球としたとき、 次の問に答えなさい。 (1) 地球の質量は何gか。 有効数字2桁で答えなさい。 (2) 地球の半径は何cmか。 有効数字2桁で答えなさい。 (3) 地球全体の平均密度として最も適切なものを、次の① ~ ④ からひとつ選び、番号で答えなさい。 ただし 6.4 = 2.6×102、 円周率 = 3 とする。 ①5.4g/cm3 1 ② 5.8g/cm² ③ 54g/cm3 ④ 58g/cm3 (1) 1kg 1000g 6.0×1007g (2)1ku=100000 cm 6.4×1080 cu (3)

解決済み 回答数: 1