学年

質問の種類

数学 高校生

なぜGはK1上にあると言えるんですか?

)を通る。 ただい ♪ 座標が である (配点 解法集 71 7² 1 68 カ 中心が点C(イコウ) ), 半径が 座標平面上に2点A(-7, -9), B (1, -1) がある。 2点A,B からの距離の比が3:1である点Pについて考える。点Pの軌跡をK」とする。 線分 AP, BP には長さについて、 アの関係が成り立つから, K, は オの円 である。 1については、当てはまるものを、次の①~⑤のうちから一つ選べ。 ア AP=2BP 11 2AP = BP AP = 3BP (4) AP = 4BP (5 4AP = BP ③ 3AP=BP 難易度 ★★★ 次に、三角形 ABP の面積が最大となる点Pについて考えよう。 な直線がK」 に接するときの接点である。 また, 点 3辺AB, AP, BP のうち,長さが一定であるものを底辺とすると,高さが最大であるとき,面積は 最大である。 このとき点Pは直線AB に カ Pは点 キ を通り, 直線AB に |な直線とK」 の交点とみることもできる。 よって、面積が最大となるのは、点Pが点D(ケコ] 一致するときである。 ク 1)または点E(シ], ク 目標解答時間 12分 垂直 キ の解答群 ⒸA ① B SELECT SELECT 90 60 カ については,当てはまるものを、次の各解答群のうちから一つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 ク |の解答群 平行 C セ さらに、三角形DEQの重心の軌跡が Ki から2点D, E を除いた部分であるとき, 点Qは 円K2: x2+y2- x タチツ=0 上にある。 と 400 (配点 15 ) 【公式・解法集 70 71 75 方程式 図形と

回答募集中 回答数: 0
数学 高校生

83. 9行目の「よって3x-2y-1=0」までは理解できました。 写真3枚目のように2点(1,1),(3,4)を通る直線のどこかに (x,y)=(a,b)の点が存在するのは分かります。 そしてこの点は③の直線上にあるのではないのですか? (解答の図ではそうなっていない。)... 続きを読む

DOO がある」 Bがある 一算がらくに AC の傾き 法。 ただい x軸に 用しない 要。 え方をベ 学ぶ。 求める (3) 重要 例題 83 共点と共線の関係 異なる3直線 指針 2直線 ①, ② の交点の座標を求め、その交点が直線③上にあるための条件式を導く。 そして,2点 (1, 1), (3, 4) を通る直線上に点(a,b) があることを示す。 また, 別解 のように,次の性質を利用する方法もある。 点(p,g) が直線ax+by+c=0 上にある ⇒ ap+by+c=0 ⇒点(a,b) が直線px+qy+c=0上にある x+y=1 ①, 3x+4y=1 ②ax+by=1 3 が1点で交わるとき, 3点 (1,1),(3,4), (a,b) は一直線上にあることを示せ。 基本82 解答 ① ② を連立して解くと x=3, y=-2 2直線 ①, ② の交点の座標は (3,-2) 点 (3,-2) は直線 ③ 上にあるから 3a-2b=1 また, 2点 (1,1), (3, 4) を通る直線の 方程式は y-1=(x-1) LA つまり 練習 83 (1) (2) (a, b) (4) (5) (6) ...... ya すなわち 3x-2y=1 A から,点(a,b) は, 直線3x-2y=1上にある。 よって, 3点 (1,1), (34), (a, b) は直線3x-2y=1上にあ る。 (3,4), 別解 原点を通らない3直線 ①, ② ③ が1点で交わるから, その点をP(p,q) とすると, Pは原点にはならない。 声 3 直線 ① ② ③ が,点Pを通ることから p+g=1, 3p+4g=1, ap+bg=1 p •1+g・1=1 p•3+α.4=1 p•a+q∙b=1 であり p = 0 または q≠0 ゆえに、方程式 px+gy=1 3点 (1,1),(3,4), (a,b) は直線 ⑦ 上にある。 3x-2y=1 (1,1) 1 (3,-2) ...... x ⑦ を考えると, ④~⑥か 係数に文字を含まない ①, ② を使用する。 34-26=1 M ⇔点 (α, b) は直線 3x-2y=1上にある。 <x=y=0のとき, ①, ②, ③ はどれも不成立。 点(p, g) が直線 x+y=1上にある ⇔p+q=1 ⇔点 (1,1) が直線 px+gy=1上にある。 <p = 0 またはg≠0 であるか ら⑦は直線を表す。 異なる3直線 2, ax+by=5 2x+y=5 ・①, 4x+7y=5 が1点で交わるとき 3点 (2,1),(4,7), (a,b) は一直線上にあることを示せ。 Op.134 EX57 131 章 3 直線の方程式、2直線の関係 3章 13

回答募集中 回答数: 0