学年

質問の種類

数学 高校生

数Ⅰの二次関数の問題です。 x=-1,1で場合分けする理由を教えてください。 [2]に含めてもよいと考えてしまいました。 よろしくお願いします。

重要 例題 130 2次方程式の解と数の大小 (3) 000 方程式x+ (2-a)x+4-2a=0が1<x<1の範囲に少なくとも1つの をもつような定数αの値の範囲を求めよ。 基本 指針 条件が「-1<x<1の範囲に少なくとも1つの実数解をもつ」であることに 大きく分けて次のA, B の2つの場合がある。 A-1<x<1の範囲に, 2つの解をもつ (重解は2つと考える) ® -1 <x<1の範囲に, ただ1つの解をもつ A [1] 方程式の2つの解をα, B(α≦β) として, それぞれの場合につ + a いて条件を満たすグラフをかくと図のようになる。 ®は以下の4つの場合がありうるので注意する。 ® [2] ® [3] -1<x の範囲に B [4] a + B x は -1<x<1 の範囲に1つ、 <-1 または 1<x の範囲に1つ + x & x-x-2=0 (x-21 (x + 1) = 0 α=-1 A B= + -1 a -1 B1x x=-1と-1<x<1 の範囲に1つ f(x)=x2+(2-α)x+4-2aとし, 2次方程式f(x)=0の 解答 判別式をDとする y=f(x) のグラフは下に凸の放物線で,その軸は直線 a-2 x= である。 2 [1] 2つの解がともに-1<x<1の範囲にあるための条 件は, y=f(x) のグラフがx軸の-1<x<1の部分と異 なる2点で交わる, または接することである。 すなわち、次の (i)(iv) が同時に成り立つことである。 (1) D≥0 (Ⅱ) 軸が-1<x<1の範囲にある (iii) f(-1)>0 (iv) f(1)>0 (i) D-(2-a)2-4.1.(4-2a) =d+4a-12=(a+6)(a-2) D≧0から (a+6)(a-2)≥0 a≤-6, 2≤a ゆえに a-2 (ii) x= について 2 よって -2<a-2<2 ****** ① -1<a-2 <1 1 の範囲 2-a x=- 2-1 条件は 「少なくとも1 であるから, グラフがx軸 場合,すなわ この場合も含まれ [1] 軸 D=0 ゆえに 0<a<4 2 (i) f(-1)=-α+3であるから よって a<3 3. -a+3>0 +

未解決 回答数: 1
数学 高校生

(1)の問題です! ①黄色い線で引いたところについてなんですが、なぜD>0じゃなくてD≧0なんですか?D=0は解は1つなると習いましたが。 ②青い線で引いたところについてですが、1より大きくならないといけないのにどうして0になってるんですか?

基本 例題 52 2次方程式の解の存在範囲 2次方程式 x2-2px+p+2=0が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 p.87 基本事項 2 答 指針 2次方程式 x2-2px+p+2=0 の2つの解をα β とする。 (1)2つの解がともに1より大きい。→α-1>0 かつβ-1> 0 (2)1つの解は3より大きく、他の解は3より小さい。→α-3とβ-3が異符号 以上のように考えると,例題 51と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα, βとし, 判 | 別解] 2次関数 別式をDとする。 (0+1)=2) | (1) 1 =(b+1)(p-2)= f(x)=x2-2px+p+2 このグラフを利用する。 D=(-)²-(p+2)=p2-p-2=(p+1)(p-2) 解と係数の関係から a+β=2p, aβ = p+2 (1) α>1,β>1であるための条件は 20 D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (B-1)>0 D≧0 から よって (p+1)(p-2)≥0 p≤−1, 2≤p ...... ①e-(8-88- (α-1)+(β-1) > 0 すなわち α+ β-2> 0 から 2p-2>0よってp>1: ② (α-1) (B-1)>0 すなわち αβ-(a+β) +1>0 から Op+2-2p+1>0),(E- x=p> 軸について f(1)=3-p>0 から 2≦p<3 カ 0 10 x=py=f( a P B よって <3 ...... ③ 求めるかの値の範囲は, 1, 2, ST ③の共通範囲をとって -10 123 p (2) f(3)=11-5p<0 p> 11 い 解 題意から,α=βは えない。 2≤p<3 (2) α <β とすると, α<3<βであるための条件は (a-3)(B-3)<0 すなわち αβ-3(a+B)+9<0 ゆえに p+2-3・2p+9 < 0 - 30 SI 11 よって p> SI A=x #301

未解決 回答数: 1