学年

質問の種類

数学 高校生

3番です。答えまでの手順に関して質問なのですが、 2番でkを用いたSの値が求まったので、 kの(問題文より最大値なので恐らく)範囲を求めるべき。 そこまではわかりました。 2つの方程式からなぜkの範囲を求められると分かるのですか?また、なぜ判別式≧0なのでしょう? (念のた... 続きを読む

3 『基礎問』 できない) 本書ではこ 効率よくま 入試に出 取り上げ 行います 実にクリ ■基礎間 題」で! ■1つのデ 見やすく 本書に デザイ 基礎問 8 第1章 式と曲線 2 円(ⅡI) だ円+y=1のx>0,y>0 の部分を C で表す.曲線C上に点 P(x1,y1) をとり, 点Pでの接線と直線y=1, および, x=2 との交点 をそれぞれ, Q, R とする. 点 (2, 1) をAとし, AQR の面積をSとお く.このとき、次の問いに答えよ. (1) +2y=kとおくとき, 積 をkを用いて表せ. (2)Sを用いて表せ. (3) P (1) 点Pはだ円上にあるので, i' +4y²=4 (c>0,y>0)をみた しています。 (2) AQRは直角三角形です。 (3) のとりうる値の範囲の求め方がポイントになります。 解答は2つありま すが、1つは演習問題1がヒントになっています。 解答 精講 (1) Sの最大値を求めよ. C上を動くとき, mi'+4y²=4 1 (1+2y1)2-4.miyュ=4 k²-4 miyi= (2) P(x1, y1) における接線の方程式は x₁x+4y₁y=4 Q(4-4₁, 1), R(2, 4-20₁) I 4y1 よって, AQ=2- AR=1- 4-4y₁2x+4y₁-4 X1 πr Y 4-2.12.1+4y-41+2y-2 4y₁ 441 2y₁ S=1/12 AQAR=(+2y-2) __ 2(k−2)2 2x141 k2-4 Q P x=2 Ay=1 AR x 2(k-2) k+2 y を消去して (3) (解I)(演習問題1の感覚で・・・) [mi'+4yi²=4...... ① |x+2y=k ...... ② =2 8 k+2 x₁²+(k-x₁)²=4 2x12-2kx1+k²-4=0 判別式≧0 だから, 1 k²-2(k²-4) ≥0 k²-8≤0 ∴. -2√2≦k≦2√2 また、右図より 1/12 ..2<k 演習問題 2 ポイント より, よって, 2<k≦2√2 が最大のときSは最大だから, Sの最大値は 6-4√2 x₁² | 2cose (0<a<) とおける. y = sine .3π 4 より (DOR E ∴.k=x+2y=2(sin0+cose)=2√2 sin| <+4 だから 1/1/12 sin (04/1 √2 sin(0+1) 2<k≤2√2 んが最大のときSは最大だから, Sの最大値は6-4√2 円 +12=1上の点は x² a² y² x=acos0, y = bsin0 とおける 9 だ円+g=1と直線y=-1/2x+k(k:定数)は,異なる2 点P, Qで交わっている.このとき, 次の問いに答えよ. (1) 定数kのとりうる値の範囲を求めよ. (2) 線分PQの中点 M の軌跡の方程式を求めよ. 第1章

未解決 回答数: 1
数学 高校生

黄色マーカーで引いたところが分かりません。 なぜ判別式が0以上になるのですか?

基礎問 8 第1章 式と曲線 2 円(Ⅱ) JX.CJ だ円 P(x,y)をとり,点Pでの接線 ② 2直線y=1, および, x=2との交点 をそれぞれ, Q, R とする. 点 (2, 1)をAとし, AQRの面積をSとお く.このとき、次の問いに答えよ. (1) +2y=kとおくとき, 積 141 をkを用いて表せ. (2) Skを用いて表せ. (3) PC上を動くとき, Sの最大値を求めよ. (1) 点Pはだ円上にあるので,12+4y²=4 (>0,y>0) をみた しています。 (2) AQRは直角三角形です. (3) のとりうる値の範囲の求め方がポイントになります. 解答は2つありま すが、1つは演習問題1がヒントになっています. 解答 精講 (1) の部分をCで表す。 曲線C上に点 +y²=1のx>0,y>0 mi²+4y²=4 1 (21+2y1) -4.miy=4 x₁y₁= k²-4 4 (2) P(x,y) における接線の方程式は +4yy=4 Q(4-44₁, 1), R(2, 4-20₁ I 4y₁ よって, AQ=2- 4-4y_2cc1+4y-4 X1 X1 AR=1-4-2.12.x+4y-4+2y-2 4y1 y 4y₁ 2y₁ ∴S= S=1/12 AQAR= (+2y-2) __ 2(k−2)2 2x₁4₁ k²-4 Q P x=2 y=1 R 2 x MAT 2(k-2) k+2 x₁+2y₁=k y を消去して (3) (解Ⅰ) (演習問題1の感覚で・・・) | vi'+4y1²=4....① 判別式≧0 だから、 演習問題 2 ・=2- ポイント x₁²+(k-x₁)²=4 2²²2-2k+k²-4=0 8 k+2 k²-2(k²-4) 20k²-8≤0 : -2√2 ≤k≤2√2 また、右図より 11 より だ円 よって, 2<k≧2√2 が最大のときSは最大だから, Sの最大値は6-4√2 |=2cos0 より (0<< とおける. ly = sin0 ∴.k=z+2y=2(sinQ+cos0)=2√/2 sin (0+7) 40+ だから、 // <sin (+4)=1 3π 4 4 √2 ∴.2<k .. 2<k≤2√2 が最大のときSは最大だから, Sの最大値は 6-4√2 +. VB' (0-1) =1 上の点は a² x=acos0y= bsin0 とおける 9 だ円 +g=1と直線y=-1/12+k(k:定数)は,異なる2 点PQで交わっている.このとき, 次の問いに答えよ. (1) 定数kのとりうる値の範囲を求めよ. (2) 線分PQの中点Mの軌跡の方程式を求めよ. 第1章

回答募集中 回答数: 0
数学 高校生

数学の式と曲線の問題です。 黄色マーカーで引いたところの解説お願いします

基礎問 2 円(ⅡI) だ円 P(zu, y) をとり,点Pでの接線 ②2 直線 y=1, および,x=2との交点 をそれぞれ,Q,Rとする.点(2,1)をAとし, AQR の面積をSとお く.このとき次の問いに答えよ. (1) 1+2y=k とおくとき, 積141 をkを用いて表せ. (2) Skを用いて表せ. (3) 精講 (1) 点Pはだ円上にあるので, zi+4yi²=4 (π1>0,y>0) をみた しています. (2) AQRは直角三角形です. (3) のとりうる値の範囲の求め方がポイントになります。 解答は2つありま すが、1つは演習問題1がヒントになっています. 解 答 (1) の部分をCで表す。 曲線C上に点 +y=1のx>0,y>0 mi2+4y²=4 Ⅱ (1+2y1)2-4.miy=4 k²-4 4 (2) P(x,y) における接線の方程式は mrx+4yy=4 Q(4-4₁, 1), R(2, 42 I 4y1 PC上を動くとき, Sの最大値を求めよ. :: Q ;.miy= よって, 4-2.1 AQ=2- 4-4y_2.1+4y-4 X1 X1 AR=1-4-2x₁2x₁+4y₁-4_x₁+2y₁-2 4y1 4ys 2y1 • S= AQ• AR=(x₁+2y₁−2)² _ 2(k−2)² 2xıyı k²-4 Q P x=2 Ay=1 R C <_2(k-2) k+2 (3) (解Ⅰ)(演習問題1の感覚で・・・) mi' +4y1²=4....① =2. x+2y=k ......② 4/1 を消去して 8 k+2 x²+(k-m)²=4 12x1²-2kx+k²-4=0 判別式≧0 だから、 演習問題 2 り k²-2(k²-4)≥0k²-8≤0 :: -2√2 ≤k≤2√2 また、右図より 11 よって, 2<k≧2√2 が最大のときSは最大だから, Sの最大値は 6-4√2 (0<<) とおける. ②ポイント ∴.2<k (4) ₁²+y₁²=1&h | 2cos0 y = sin0 k=x₁+2y₁=2(sin0+cos0)=2√/2 sin(0+1) 3π <+42 だから、 // <sin (0+/4) 1 ≤1 2<k≤2√2 が最大のときSは最大だから, Sの最大値は 6-4√2 円+432=1上の点は x=acose, y = bsin0 とおける 9 だ円+g=1と直線y=-2x+k(k:定数)は,異なる 2 点P, Qで交わっている. このとき,次の問いに答えよ. (1) 定数kのとりうる値の範囲を求めよ. (2) 線分PQの中点の軌跡の方程式を求めよ. 第1章

回答募集中 回答数: 0