学年

質問の種類

数学 高校生

⑵で x-1<0, x-2≧0 という場合分けはしなくていいのでしょうか?

基本事項 20 のとき) 0 のとき) 次の方程式を解けむ式の解法 (1)|x-2|=3x I (2)|x-1|+|x-2|=x (1) 141={_^ 絶対値記号を場合分けしてはずすことを考える。 それには, 指針 ( A ≧ 0 のとき) ( A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち,| |内の式 = 0 の値である。 (1)x2≧0と x-2<0, すなわち, (2) x-2≥0 x-2<0 x-1<0x-1≥0 x≧2とx<2の場合に分ける。 おくと =±2 (2)2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 2 AX x 場合の分かれ目 から 1 解答 が, を利用して (1) [1] x2 のとき, 方程式は これを解いてx=-1 ない。 x-2=3x x=-1はx≧2を満たさ [2] x<2のとき, 方程式は -(x-2)=3x 1 1 の数に これを解いて x= x= はx<2を満たす。 2 2 すくなる。 1 とおくと [1], [2] から, 求める解は x= 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 最後に解をまとめておく。 (2) [1] x<1のとき, 方程式は (x-1)(x-2)=xx-1<0, x-2<0→ すなわち -2x+3=x - をつけて||をはず す。 EX これを解いて x=1 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x [3] 2≦x のとき,方程式は x=1 は x<1を満たさない。 x-10, x-2< 0 x-1>0, x-2≧0 すなわち 2x-3=x 直線上の これを解いてx=3 以上から 求める解は x=3は2≦xを満たす。 x=1,3 最後に解をまとめておく 不等式を y=x-21のグラフと方程式 検討 PLUS ONE (1)について y=x-2|は,x≧2のとき y=x-2, であるから, y=|x-2|のグラフは右の図の① (折れ線) であ る (p.118 参照)。 折れ線y=|x-2| と直線 y=3xは,x 座標 がx=-1の点で共有点をもたないから, x=-1が方程式 |x-2|=3xの解でないことがわかる。 yy=3x y=x-2 x<2のとき y=(x-2) 2 -10 2 12

解決済み 回答数: 1
数学 高校生

丸で囲んだ所の解法について、 基本例題は普通に解けました、ですが練習問題だとは正しい答えは出せません。 どうしてでしょうか。

h これ 係数と fla- 絶対値を含む不等式の場合分けをしない解法 f(x) 以下では,第2章 「集合と命題」 の内容も含むため、その学習後に読むことを推奨する。 ||x|<c-c<x<c 絶対値を含む不等式は、 場合に分けて解くのが大原則であるが, 例題41 (1)~(3)6 ) | | x/ > c = x <- c & fc<x |A|<B⇔-B<A<B 次の不等式を解け。 (1) x-1|+2|x-3|≦11 (z)を微分するという. また. 基本 例題 42 絶対値を含む1次不等式 (2) ①①①①① ((1) 西南学院大, (2) 大阪経大) (2)|x-7|+|x-8|<3 基本41 (1) x-310 x-320 120円 指針 (1) 2つの絶対値記号内の式が0となるxの値は x=1,3 よって, x<1, 1≦x<3, 3≦xの3つの場合に分けて解く。 (2)2つの絶対値記号内の式が0となるxの値はx=7,8 よって, x<7, 7≦x<8, 8≦xの3つの場合に分けて解く。 73 不等式の形によっては, により、場合分けをしないで解くこともできる。 (cは正の定数)を利用す ここでは、cが一般の文字式の場合、 つまり x Date A>BAK-BまたはB<A |x-4|=max (x-4, 4-x) 実数 α, bのうち大きい方 (厳密には小さくない方) を max (a,b)と表すと ⇒ max(ヌ-11-x)+2max(x-3.3-x) 例1 x-4/<3x⇔-3x<x-4<3x <) max13x-7-x+5 ・1-5-3x+7)=11 -lx-4|<3x max (x-4, 4-x)<3x よって 一般に,xが実数のとき|x|=max (x, -x)である (*)を示す。 ⇔x-4<3x かつ 4-x<3x x-4<3xx-4>-3x cas ⇔-3x<x-4 <3x 補足条件p: 「x-4|<3xかつ 3x≦0」, 条件g: 「-3x<x-4<3x かつ 3x≧0」 を満たす 体の集合はともに (空集合) である。 30の場合にも(*)は成り立つ。 例2 x-4>3x⇔x-4<-3x または 3x <x-4 ...... (空集合)は任意の集合の部分集合であるから, g, g⇒pはともに真とない (**) を示す。 17.x-11+21x-31=11 max(+2(3)、X-1+213-x)、1-x+2(x-3)(x+2(3-x) ≦11) 4 3x-7311 かつ一が≦11かつ×5≒いかつ-3x+7≦11 27かつ 4 -6 16 X3-6かつ16から水3-3 4 ミカミワ lx-4|>3xmax (x-4, 4-x)>3x 「a, bのうち大きい方よ ⇔x-4>3x または 4-x>3x さい」とき,c<a<b,c<b いう場合以外に,a<e<b ⇔x-4>3x または x-4<-3x ⇔x-4<-3x または 3x <x-4 b < c <a という場合がある。 [補足] 3x<0の場合, x-4>3%は常に成り立ち、 「x-4-3x または3x<x-4」も常に甘 立つ。 よって, 3x < 0 の場合にも(**)は成り立つ。 [参考] 絶対値を含む式が2つある場合について,上で紹介した記号 max を用いると |A|+|B⇔max(A,-A)+max (B,-B) max(A+B, A-B, -A+B,-A-B) であるから,Cの正負に関係なく、次のことが成り立つ。 [A]+[B]<CA+B<C かつ A-B<Cかつ A+B<Cかつ-A-B<C [A]+[B]>CA+B>CまたはABC または A+B>CまたはA-B>C (2)1-7+12-81-3 max (7-7. 7-x) + max (x-8 8-X) <3 max(x-7+7-8、メー7+8-x、ワース+スー8、ワーメな火)<3. max(2x-15,1,-1,-2x+15)<3 よって、 2x-15くろかつ1cろかつてくろ、かつ-2x+153 x9 かつ46 6 < x < 9.

未解決 回答数: 1
数学 高校生

重要例題125についてです!! ここまでOK!!と書いているところまで分かるのですが、 そこからなぜ共有点の個数が2個を超えるのかがわかりません😭😭解き方を教えてください!!

06 重要 例題 125 絶対値のついた 000 kは定数とする。 方程式 | x-x-2|=2x+k の異なる実数解の個数を調べよ。 基本12 指針 絶対値記号をはずし、 場合ごとの実数解の個数を調べることもできるが、 方程式f(x)=g(x)の解⇔y=f(x), y=g(x) のグラフの共有点のx座標 このとき,y=|x-x-2|とy=2x+kのグラフの共有点を考えてもよいが、方程式を に注目し, グラフを利用して考えると進めやすい。 |x-x-2|-2x=k (定数kを分離した形) に変形し,y2-2のグ ラフと直線y=kの共有点の個数を調べると考えやすい。 CHART 定数kの入った方程式 f(x)=kの形に直す(定数分離) |x2-x-2|=2x+kから 解答 y=|x2-x-2|-2x ...... |x2-x-2|-2x=k ① とする。 x2-x-2=(x+1)(x-2) であるから x2-x-2≧0の解は x≦1,2≦x x²-x-2<0の解は よって, ① は x≦-1, 2≦xのとき -1<x<2 y=(x2-x-2)-2x=x2-3x-2 =(x-3)² - 17 2 1 <x<2のとき y=-(x2-x-2)-2x =-x2-x+2 9 ここまで =(x+1/+1)== ① A 94 ) 検討 y=x2-x-2|のグラフは 次のようになる(p.204 参 照)。 94 YA 2 [s] -10 1 2 2 12 38 これと直線 y=2x+kの 22 有点を調べるよりも、 C -1 -2 17 okiri 0 ように, ① のグラフと y=kの共有点を調べる がらくである。 > ゆえに、①のグラフは右上の図の実線部分のようになる。 与えられた方程式の実数解の個数は,①のグラフと 直線 y=kの共有点の個数に等しい。 これを調べて <-4のとき 0 個; k=-4のとき1個 ; B-4<k<2, TO k=2, 4 9 -くんのとき2個; 4 L のとき3個; 2<k<- <1のとき4個 トレー i0 x

解決済み 回答数: 1