学年

質問の種類

物理 高校生

物理基礎の問題です! アンダーラインで引いたところがなぜこのような式になるのか分かりません。そもそもが間違っていたらご指摘お願いします。答えは○3みたいです。 分かる方お願いします!

物理基礎 問4 一般に,大きさTの力で引かれた一様な弦(糸) を伝わる横波の速さは, Tに比例することが知られている。 図5のように、水平な台上の左右のなめらかな滑車に通した糸の両端に質 量mのおもりと質量4mのおもりをそれぞれつるした。 左の滑車からの距 離がL, 右の滑車からの距離が2Lとなる位置の糸を振動装置の振動源Oに 固定して水平に張った。 振動装置は台に固定されている。 振動源 0 と左の 滑車の間の糸を糸 A, 右の滑車の間の糸を糸Bとする。 振動装置の振動数 を調節して,糸Aが共振して腹が二つの定常波(定在波) が生じるようにし た。 このときの糸A, B の振動のようすの概形を表す図として最も適当な ものを、下の①~⑤のうちから一つ選べ。 ただし, このとき糸Aが振動源 0を引く力の大きさと糸Bが振動源Oを引く力の大きさは異なっているが, 振動源は左右に動くことはないものとする。 4 L 2L 滑車 糸A 糸 B 滑車 振動装置 おもり 台 ・おもり m 14m 図5 糸B 糸 A 糸 A 糸B 定常波は生じない A) λ = L f = 4 Rimg B) = = * + kn4mg 問5 次の文章中の空欄 ア なものを,下の①~⑥のう 電磁波は, ある場所で生 ア なって空間を伝わるもので 進行方向が垂直な べて電磁波であり, 波長( 可視光線より波長が長い どで利用されている。 ① ア 縦波 縦波 縦波 横波 横波 ⑥ 横波 [23] 糸 A 糸B 糸 A 糸B -KN4mg L kamg 糸 A 糸B 2 L

回答募集中 回答数: 0
化学 高校生

全て解答解説お願いします。 答えてくださった方はフォローベストアンサーします

7. 反応速度について、 次の各問いに答えよ。 (1) 化合物A と B から化合物Cが生じる反応において, AとBの初期濃度を変えて反応初期にお けるCの生成速度を求めると,以下の表のようになった。 品 Aの初期濃度 B の初期濃度 実験 反応初期のCの生成速度 [mol/L] [mol/L] [mol/ (Ls)] 1 0.10 0.10 2.0×10-3 2 0.10 0.20 4.0×10-3 3 0.40 0.10 3.2×10-2 I. この反応の反応速度式はv=H[A][B]yの形で表される。 x およびyの値を求め、反応速度式 を答えよ。 Ⅱ. Ⅰの反応速度式のの値を有効数字2桁で求め、単位をつけて答えよ。 (2) 温度が一定のとき, 反応速度は分子やイオンの衝突回数に比例する。 しかし、反応の温度を 10℃上昇させると, 衝突回数は一般に数パーセントしか増加しないのに反応速度は2~3倍にな る。その理由を, 45字以内で記せ。 (3) 3%の過酸化水素水 10mLに酸化マンガン(IV)の粉末 0.5gを加えたとき、時間と気体の発生 量との関係は、右図の点線アのようであった。 この実験を次の条件で行うと、そのグラフの概形は どうなるか。 右図中の記号で答えよ。 ① 過酸化水素水の温度を10℃高くする。 1.5%の過酸化水素水 10mLを用いる。 ③ 3%の過酸化水素水 20mLを用いる。 気体の発生 I ア オ 0 時間

回答募集中 回答数: 0
英語 高校生

式と曲線の問題なのですが黄色マーカーで引いた部分の説明がわからないです。教えて頂けると嬉しいです。

練習 曲線(x2+y2)3=4x2y2 の極方程式を求めよ。また,この曲線の概形をかけ。ただし,原点O を 179 極, x軸の正の部分を始線とする。 x=rcose,y=rsin0, x2+y2=2を方程式に代入すると よって ゆえに re-rsin^20=0 (2)=4(rcose) (rsin0)2 r(r+sin20)(r-sin20)=0 r=0 または r = sin 20 またはr=-sin20 よって ここで,r=-sin20から -r=sin{2(0+z)} 点(r, 0) と点(-r, 0+π) は同じ点を表すから, r=sin20と r-sin 20 は同値である。 ←2sincos0=sin 20 X3 また, 曲線 r=sin20は極を通る。 したがって, 求める極方程式は 88 r=sin20 ←0=0のとき 次に,f(x,y)=(x2+y2)-4x2y2 とすると, 曲線の方程式は f(x, y) = 0...... ① sin 20=0 f(x, -y)=f(-x, y) =f(-x, -y)=f(x, y) であるから, 曲線はx軸, y 軸, 原点に関してそれぞれ対称である。 20,0≧≦として、いくつかの0の値とそれに対応する ←(-x)²=x². F(-y)²=y² AB Jet の値を求めると,次のようになる。 π 0 r 20 0 1212 1822 兀 兀 √√2 √3 63 4 1 2 1332 √3 √2 382 ・π 5 兀 ・π 12 2 0 |1|2 これをもとにして, 第1象限にお ける ① の曲線をかき, それとx 軸,y軸,原点に関して対称な曲 線もかき加えると, 曲線の概形は yA 1 24 32 右図のようになる。 (1, 0) x (0) (12/20) ←y=sin20のグラフは 直線 0=7 に関して対 称でもある。 ←図中の座標は,極座標 である。 検討 α を有理数とする とき, 極方程式 r=sina0 で表される曲 線を正葉曲線 ( バラ曲 線)という。

回答募集中 回答数: 0
数学 高校生

星印でマーカー引っ張ってあるところがなんで2p=〜になるのかがわかりません。教えてください!

・ 楕円・ 双曲線 (473) C2-125 そ *** その概形を 準線 y=3 例題 C250 放物線の決定 ( 2 ) **** 焦点のx座標が3, 準線が直線x5 で,点(3, -1) を通る放物線の方 程式を求めよ. 考え方 放物線 y=4px の頂点の座標は (0, 0) である. この放物線をx軸方向に a, y 軸方向にだけ平行移 動した点 (a, b)が頂点の放物線は, (y-b)2=4p(x-a) と表すことができる. x 準線は, 直線 x=- 解答 焦点の座標を(36) とすると,準線が直線 x=5 である から頂点の座標は (46) とおける. したがって、求める放物線の方程式は, (y—b)²=4p(x-4)...... となる. y²=4px 1² p= ここで 2p=3-5=-2 これより p=- ①より x=5 準線 焦点 (3,6) 頂点 (4,6 ① に p=-1 を代入す る. を代入する。 焦点の座標は、 0.1) を代入する. (y-b)=-4(x-4) これが点 (3,-1) を通るから, (-1-b)=-4(3-4)(0) J- b=-3,1 よって, 求める放物線の方程式は, (y+3)=-4(x-4), (y-1)=-4(-4) 前章土 利 02=4pxにp=2 を代入する。 =4gy に q=-3 を代入する。 注) 原点O(0, 0) が頂点の放物線 y2=4px x2=4qy x=0,6) x軸方向にay 軸方向にだけ平行移動 「点 (a, b) が頂点の放物線 (y-b)²=4p(x-a) (x-a)²=4q(y-b) 5 3.F 練習 C2.50 ** PA (a,b Oa x x 131 焦点のx座標が5. 準線が直線x=1 で 点, 3 を通る放物線の方程式を求 B B: C C 6

回答募集中 回答数: 0