学年

質問の種類

数学 高校生

148(1)について あらかじめそれぞれの箱に3つの玉を入れて、残る7つの玉について、1つの玉につき3つの箱の選び方があるとして3^7であると考えたのですが答えが違いました。 これは玉に区別があると考えた解き方になりますか? 玉に区別がない場合の解き方だと思っていたので、な... 続きを読む

(3)Uが2つとも左から偶数番目にくる並べ方の数を求めよ。 00(4) ○0 (4) Uがとなり合わない並べ方の数を求めよ。 (首都大学東京) 148*10個の玉を3個の箱に分けて入れる。 ただし, どの箱にも必ず1個以上の 玉を入れるものとする。 XX(1) 10 個の玉に区別がなく,また3個の箱にはそれぞれ区別がある場合, 玉の入れ方の総数は何通りあるか。 (2) 10個の玉にはそれぞれ区別があるが, 3個の箱には区別がないとする。 そのとき2つの箱に4個ずつ, 残り1つの箱に2個の玉を入れるとす るとき,入れ方の総数は何通りあるか。 (3)10個の玉にはそれぞれ区別があり, 3個の箱のうち2つの箱は同じで 区別がなく,残りのもう1つの箱とは区別ができる場合を考える。 3つ の箱のうち2つに4個の玉を入れ, 残り1つの箱に2個の玉を入れると するとき,入れ方の総数は何通りあるか。 149 6つの面すべてに図のような各面を9等分する平 行線の入った立方体 ABCDEFGH において, GからAまで立方体の辺または平行線上を通っ て行く最短経路を考える。ただし,辺は両端点 B (同志社大改) D

解決済み 回答数: 1
数学 高校生

この問題わかる方いらっしゃいましたら教えていただけると嬉しいです🙇‍♂️

64 14 次のような街路の町の地図を見て、下の問いに答えよ。 ふもとに開きない。 Po Qo Q₁ Pi Q₁ P P Q2 時間 しかの とならない A B Q₁ TEOA PP Q5 GA (6] Q. (1)S地点からスタートしてA地点に行く最短経路は,分かれ道が3回ある中で左下を ア 回 右下を イ 回選ぶから, ウ | 通りある。同様に考えると,B地点に行く に起こると期待できる 最短経路も ウ通りあることがわかる。 (2)S地点からスタートしてC地点に行く最短経路を数える方法はいくつかある。一つの方法 は,4回ある分かれ道での進み方を考えるもので、この場合の数はCを計算することで 求められる。ほかにも, A地点を通る最短経路とB地点を通る最短経路をそれぞれ考えても キがC地点に行く 求めることができ, A地点とB地点それぞれを通る最短経路の数の 最短経路の場合の数であると言える。 下線部について, A地点を通る最短経路とB地点を通る最短経路に関する正しい記述は オ と カ である。 オ の解答群(解答の順序は問わない。) ⑩ A地点とB地点の両方を通るC地点までの最短経路が存在する。 ① A地点とB地点の両方を通るC地点までの最短経路は存在しない。 C地点までの最短経路は必ず A地点とB地点のどちらか一方を通る。 ③A地点とB地点のどちらも通らないC地点までの最短経路が存在する。 キ については,最も適当なものを,次の①~④のうちから一つ選べ。 ⑩ 和 ① 差 ②積 商 平均 C地点に行く最短経路は ク 通りある。

回答募集中 回答数: 0
英語 高校生

次の問題で1枚目の左上の(2)と演習問題の(2)は同じ様な問題だと思うのですが2枚目は演習問題の答えなのですが何故左上の問題は経路を一つ一つ分けて計算しているのでしょうか?

204 第7章 確 率 礎問 126 道の確率 i) P→C→B→Rとすすむ場合, 進路が2つある交差点は, PとCの2点 よって,i)である確率は(12-1 205 右図のような道があり, PからQまで最短経路で すすむことを考える. このとき, 次の問いに答えよ. (1) 最短経路である1つの道を選ぶことが同様に確 からしいとして, Rを通る確率を求めよ. R P (2) 各交差点で, 上へ行くか右へ行くかが同様に確からしいとき 2XRを通る確率を求めよ. 精講 (1)題意は「仮にPからQまで道が5本あったとしたら, 1つの道 を選ぶ確率は1/3」ということです. (2) 題意は「ある交差点にきたとき,上または右を選ぶ確率がそれぞれ1/23」と いうことです. iii) P→C→D→Rとすすむ場合, 進路が2つある交差点は, P,C,D の3点 よって,)である確率は (12/1 = i), ii), )は排反だから、求める確率は 1 1 1 7 + 2 4 8 8 注 上の(1),(2)を比べると答が違います. もちろん, どちらとも正解 です.確率を考えるとき 「同様に確からしいのは何か?」 ということ が,結果に影響を与えます. また,(1)と(2)でもう1つ大きな違いがあります. それは, (1) では 「Qにつくまで」 考えなければならないのに対して, (2) では 「Rにつ いたら,それ以後を考える必要がない」 点です. 解 答 (1) PからQまで行く最短経路は 4! 3!1! -=4 (通り) (4C でもよい) また,PからRまで行く最短経路は 3! -=3(通り) (3C1 でもよい) 2!1! 112 RからQまで行く最短経路は1通りだから PからRを通りQまで行く最短経路は 3×1=3 (通り) よって, 求める確率は 3 4 (2)(1) より題意をみたす経路は3本しかないことがわかる. ここで, A, B, C, D を右図のように定める. i) P→A→B→R とすすむ場合, 進路が2つある交差点はPのみ. 1 よって, i) である確率は 2 B R PCD ポイント 道の問題では,次のどちらが同様に確からしいかの判 断をまちがわないこと I. 1つの最短経路の選び方 Ⅱ. 交差点で1つの方向の選び方 演習問題 126 右図のような道があり, PからQまで最短 経路ですすむことを考える. このとき,次の 問いに答えよ. Q R 1x (1) 最短経路である1つの道を選ぶことが 同様に確からしいとして, Rを通る確率を P 求めよ. (2) 各交差点で, 上へ行くか右へ行くかが同様に確からしいとして, Rを通る確率を求めよ. 第7章

解決済み 回答数: 1
数学 高校生

9(1)で2枚目にある別解の最後の誤答例2つが誤りなのは、全てが等確率じゃないからですか?

^2/ 確率は 13×(1/2) である.ここでは書きこみ方式(場合の数の ○10 参照) で解いてみるが, ○印の点を何回通るかを考えて計算してもよい。 必ずB に到達する 上側と右側がカベになっているので,必ずB に到達する.つまり,「Qを通っ てBに行く確率」 は 「Qを通る確率」 であり, Q →Bは考える必要がない. 問題文に惑わされないよう にしよう. QからどうろくてもBにたどり 解答 (キリなので。以上しかいけん) 下図の点X,Yに到達する確率がそれぞれ,yのとき, Zに到達する確率は,Yは右端でない点 Xが上端のときェ+/12y, それ以外のとき 1/2(xty)である。 ※(2)(土)7C3 766.5 = 27 X1Z X 1 2 Iz 1 JI x 16 1 1 y 2 2 y Y 8 これを用いて各点に到達する確率を書き こんでいくと右のようになるから,答えは 35 1 4 1 Q: 2' 128 6 22 64 32 64 128 全て同じ月を 100 11 2 1 16 4 16 6-16-3-8 IN 1-4 38|24 12 A ・B P 35 16 32 -275 -10-30 -103- 20 128 64 Q 15 32 64 4 +18- 5 16 32 110 8 16 11 9 演習題(解答は p.50) 右の図のように東西に4本, 南北に6本の道があり, 各区画 は正方形である. P, Qの二人はそれぞれA地点, B地点を同 時に同じ速さで出発し, 最短距離の道順を取ってB地点, A地 西 点に向かった.ただし, 2通りの進み方がある交差点では, そ 東 IC れぞれの選び方の確率は 1/12 であるとする. P,QがC地点で A 南 2" 北 B ○チルート/ル入る22 (a) (1) 4x13 (b)(5)(x(2)21 (2)x()×1 (1) (+)*x(1) × 1' (1)(2)・(ェ) あとは (2)(土) L 31 Seftzel ((やすか (4) f ・12/1 GC3-4) × -9) 6 > F 27 27 出会う確率は(1)である.また,どこか途中で出会う確率は (2) である。 中:A→c かれる Q:B→C 42 かどっこに 気をつけなきゃ (2)は, 出会う地点をま ず求める。 図の対称性も (北里大薬) 活用したい。

解決済み 回答数: 1