学年

質問の種類

数学 高校生

水色の部分のところが理解出来ません 教えてください

B 基礎問 446 第3章 2次関数 第 3 章 2次関数 26 1次関数のグラフ IND (2)(i) (0)=|0-1|+2=|-1|+2=3 28 (2)=12−1|+2=1+2=3 f(4)=|4-1|+2=3+2=5 (ii) 0≤x≤3, -11-1≤2 ールや 47 よって,0≦x≦2 (1) 次の方程式のグラフをかけ. .. 2≦x-1|+2≦4 e 1sx-12ではない (i) y=1 (ii) x=2 (ii) y=-x+2 関数 f(x)=|-1|+2 について, 次の問いに答えよ。 (iv) y=2x-1 よって, 値域は, 2≦f(x) 4 (答) 定義域の両端のf(x)の (i) (0),(2), f (4) の値を求めよ. (i) 定義域が 0≦x≦3のとき, 値域を求めよ. f(0)=3,f(3)=4だから、 値域は 3≦f(x)≦4 値を求めても値になる とは限らない 第3章 精講 (1) 座標平面上の直線は,次の2つのどちらかの形で表せます。 ① y=mx+n ② x=k 参考 1 ② は傾きをもたち ①は傾きmで点 (0,n) を通る直線を表します. ②は点(k, 0)を通り, y 軸に平行な直線を表します. (2)y=f(x)において,このとりうる値の範囲を定義域、その定義域に対 11で学んだ絶対値記号の性質を利用して y=f(x) のグラフをかいて、値域を求めてみましょう。 (x≥1) x-1 (x-1)(x-1) 0≦xの範囲において, だから、 Y (1) (1) 34 解答 て決まるf(x) (すなわち, y) のとりうる値の範囲を値域といいます。 x+1 (1≤x≤3) f(x) x+3 (0≦x<1) よって,f(x)=x-1+2 のグラフは右図のよう になるので, 求める値域は X O 3 (ii) 2≤f(x)≤4 1x=2 域の両端のyの値を調べるだけで

解決済み 回答数: 1
数学 中学生

数学 一次関数の利用の問題です 一次関数が苦手でほとんど理解出来てません □9 (1)~(3) □5 (3) の解き方を教えてほしいです また、解く時のコツなどあればお願いします

3 ② y=-2x+2 (2) 次の方程式のグラフをかきなさい。 x+y=-4 Y = -K - 4 9 -x+2y-12=0 27 = 20 +12 Y = = = K ₁6 (2) とyの関係を表すグラフをかきなさい。 (3) Bさんは, Aさんが走りはじめてから2分後 に分速 175mで走りはじめました。 B さんの エネルギー消費量が A さんのエネルギー消費 量と等しくなるのは, Aさんが走りはじめてか ら何分後か求めなさい。 (1) (3) キロカ ロリー [1次関数の利用) AさんとBさんは, 運動場でランニン グをしました。 Aさんは走りはじめてか ら最初の5分間は分速150mで走り 次の7分間は分速100mで走りました。 右の表は, ランニングでの1分あたりのエネルギー消費量を表しています。 Aさんが走りはじめてから分後のエネルギー消費量を”キロカロリーとするとき 次の(1)~(3)に答えなさい。 (1) Aさんが走りはじめてから3分後までのエネルギー消費量を求めなさい。 分後 -5 (2) 速さ (m/分) 1分あたりの エネルギー消費量 (キロカロリー) y |140| 120 |100 80 60 40 20 5 O O 2 4 5 220 <(1) 2 点, その他 3点×2> 100 150 175 5 6 8 12 14 S I 8 10 12 X

回答募集中 回答数: 0