学年

質問の種類

数学 高校生

数学cについてです (3)番です 見にくいですが、解説の下線部までは求められたのですが、直線AB の式がどこから来たのかがわかりません どのように求めるのでしょうか

図のように ry 平面上に点A(a, 0) B(0, 6) をとり, 線分ABを T1-t:tの比に内分する点をPとする. ただし, a≧0,6≧0,0<<1 であり線分ABの長さは常に1とする. (1) 点Pの座標およびy座標をα と tで表せ (2)点A0≦a≦1の範囲で動くとき,点Pはどのような曲線上を動くか. (3)(2)で求めた曲線上の点P における接線が,直線ABに一致するとき, との関係を求めよ.また,この関係を満たしながらt が 0<t<1の範囲 で動くとき, 接点はどのような曲線上を動くか. 2 b B3 O 2 P 1-t (3) a X (名古屋市立大薬一中 / 後半省略) アステロイドの性質 アステロイド (x3+y3=1; 媒介変数表示はx=cos 0, y=sin30) は, 長さ 1の線分がx軸,y軸上に両端点がある状態で動くときに通過する領域の境界にあらわれる. 例題を解 くと,(2)が楕円,(3)後半の曲線がアステロイドになり,両者は接する(接点は(3) 前半で求めたも の傍注の図参照). 演習問題も同じ図になるが, ABの通過領域を求める計算をやってみよう. 12 1-02= y 解答圜 (1)AB=1より6=√1-a2 であるから,P(ta, (1-t)/1-a²) YA (BB (2)=ta, y=(1-t) 1-α からαを消去すると, (0-1)+( P 2 y² 2 + -=1 0-2- 1-t t² (1-t)2 1-t 抹香 y2 (3)楕円 + +2 (1-t)2 =1上のP(ta, (1-t) √1-α2) における接線は, t 1-t -S) 1- ta (1-t)√1-a2 a y = 1 すなわち -x+ (1-t)2 t √1-a2 1-t -y=1である. 楕円の接線の公式. I 一方, 直線AB は y + =1だから, 両者が一致するとき, (+) a √1-a2 AO a 1 1-a2 -=- かつ : a=√t ta 1-t √1-a2 a=√f のとき,P(x,y)=(t√t, (1-t)√1-t) となるから, 3 3 x=tz,y=(1-t) 2 23 を消して,y=(1-x)2 2 2 ∴. x3+y=1 (+)+s ←第2式からは1-4²=1-t ■(2)と(3) を重ねて描くと YA 1 2 -SD-S 1-t 2 -x³+y³= 3=1 P(+², (1-+)²) A 4 演題 (解答は p.90) 0 t 1 IC

未解決 回答数: 0
数学 高校生

3番が理解できません教えて欲しいです

△ABC において 辺BC AB=c, BC≠2a, CA = b とおくとき (1) cos B を b c で表せ. (2) AM2 を a, b c で表せ. (3) AB2+AC2=2(AM2+BM2) が成りたつことを示せ . 精講 # B a M + a C C-BM (2) 三角形の内部に線が1本ひいてあると, 1つの角を2度使うこ とができます. この問題でいえば, ∠B を △ABC の内角と考え て(1)を求め,次に △ABM の内角と考えて AM2 を求めることが それにあたります。 (3)この等式を中線定理 (パップスの定理) といいます。この等式は,まず使 えるようになることが第1です. 使えるようになったら自力で証明すること を考えることも大切です. また, 証明方法はこれ以外に,三平方の定理を使 う方法()や数学II で学ぶ座標を使った方法,数学Cで学ぶベクトル (TA を使う方法などがあります. 図中の線分AM を中線といいますが,この線分AMを2:1 に内分する 点Gを△ABCの重心といい(52) これから学ぶ数学IIの「図形と方程 「式」,数学Cの「ベクトル」 「複素数平面」 でも再び登場します. 解答 (1) △ABCに余弦定理を適用して 4a²+c2b2_4a2+c2-62 cos B= 2.2a.c 4ac (2) ABM に余弦定理を適用して COSA=Bi 260 AM²=c²+a2-2ca cos B=c²+a24a²+c²-b² b²+c²-2a² 2 = 2 (3)a=BM,b=AC, c=AB だから, 2AM²=AC2+ AB2-2BM2 よって, AB2+AC2=2(AM2+BM²)

回答募集中 回答数: 0