学年

質問の種類

数学 中学生

(4)がなぜ畑Bになるかが分かりません。 説明をよんでも意味不明なので簡単で分かりやすく教えてくださると嬉しいです!

142 理解 1 下の図は,畑A~Dで収穫したジャガ イモの重さをヒストグラムに表したもの である。 12 ボウ AとE た。 を、 500円 A 畑B 500 400 400 300 300 (回) 8 6 200 200 100 100 50 80 110 140 170 200 (金) (個) C 50 80 110 140 170 200 (g) D 500r 500円 400 400 300 300 200 200 (回) 8 100 [100] 0 50 80 110 140 170 200 (g) [OL 50 80 110 140 170 200 (g) 6 この図をもとに考えるとき。 次の(1)~(4) にあてはまる畑はどれか, 答えなさい。 (1) データの範囲が最も小さい畑 いちばん左にある長方形といちばん右にある長方形が 近いほど、データの範囲が小さい。 よって、 畑Dである。 (2) データの範囲が最も大きい畑 畑 D いちばん左にある長方形といちばん右にある長方形が 離れているほど。 データの範囲が大きい。 よって、 畑Cである。 C (3) 平均値, 中央値 最頻値がすべて近い値 になる畑 山が1つでほぼ左右対称な山の形をしたヒストグラム では,平均値,中央値, 最頻値はすべて近い値になる。 よって, 畑Aである。 (4) 平均値が最頻値より大きいと考えられる A ・畑 畑B では、最頻値は度数が最も多い階級の階級値 87.5gで,平均値はそれより大きいと考えられる。 他の畑では、平均値が最頻値とほぼ同じか、それより 小さいと考えられる。 よって、 畑Bである。 畑 B (1) 21 0

解決済み 回答数: 1
数学 高校生

統計的な推測 Zは近似的にN(0,1)に従うと書いてある場合と普通に ZはN(0,1)に従うと書いてある場合があります。 この二つをどう使い分ければいいのか教えてください。

基本例 例題 母平均 0. 88 大数の法則 - 555 00000 母標準偏差をもつ母集団から抽出した大きさんの標本の標本平均 ýが0.1以上0.1以下である確率 P(|X|≦0.1) を, n=100, 400, 900 の各場 合について求めよ。 指針 ・基本 80, p.549 基本事項 m=00=1であるから、標本平均又は近似的に正規分布 N (0, 1/2)に従う。 n=100, 400, 900 の各場合について, 正規分布 N(m,d')はZ=X-mでN(0, 1)へ[標準化] に従い, 確率 P (|X| ≦ 0.1) を求める。 O n=100,400,900 は十分大きいと考えられる。 解答 n=100 のとき,X は近似的に正規分布 N(0, 100) に X 従うから,Z= 1 10 とおくと, Zは近似的にN(0,1) に従う。 よって P(|X|≦0.1)=P(|Z|≦1)=2p(1) =2.0.3413 =0.6826 P(X|≦0.1) =P(0.1) =P(|Z|≦1) n=400 のとき,Xは近似的に正規分布 N0, に 400 X 1 20 従うから, Z= とおくと, Zは近似的にN(0, 1) に従う。 よって P(|X|≦0.1)=P(|Z|≦2)=2p(2) 2章 母集団と標本 ①~③ から, nが大きくな るにつれて =2•0.4772 =0.9544 n=900 のとき,X は近似的に正規分布 N(0, 900 1 に 検討 ☑ 従うから, Z=- とおくと, Zは近似的に N(0, 1) 78.0 30 に従う。 よって P(|X|≦0.1)=P(|Z|≦3)=2p(3) =2.0.49865 =0.9973 ③ P(X|≦0.1) が1に近づくこと,すなわ 大数の法則が成り立つ (標本平均 Xが母平均 0 に 近い値をとる確率が1に近 づく)ことがわかる。 練習 さいころを回投げるとき、1の目が出る相対度数を R とする。n=500, 2000, 88 4500の各場合について, PR--//sono) の値を求めよ。

解決済み 回答数: 1
数学 中学生

この問題は箱ひげ図の応用問題なのですが、なぜ初めに累積度数を計算するのでしょうか?

ⓒ P.13 生徒に対し, 国 , 組ごとの国 表したもので テストを行った。 下の表は,組ごとのテスト の得点を度数分布表にまとめたものである。 で比べ 度数(人) 階級(点) 1組 累積 2組 累積 3組 累積 以上 未満 45~ 50 50~ 55 55 60 60 ~ 65 65 70 (70 757 75~80 90100(点) 543 7 7 7 1 | 5 9 12 19 合計 34 23 26 27 26 33 32 32 1 34 33 1 33 33 345136 4616 2 420745133 12 13 3728 185/C して正し びなさい。 170 もっと 点が最も 下の図のア~ウの箱ひげ図は, 1組, 2組,3 組のテストの得点のいずれかを表している。 1組, 2組 3組のテストの得点の箱ひげ図を, ア~ウからそれぞれ選びなさい。 一位範囲 136 ア 四分位 ① いのは 一日太 アルゼンチン ブラジル スイス スペイン ポルトガル メキシコ デンマーク コロンビア 40 45 50 55 60 65 70 75 80点) 中 はじめに 第2四分位数 (中央値)がどの階級にふくま れるかを考える。平 各組で累積度数を計算しておく。 人数 じで ■ 得点が最も低 全 “から、四分位範 3組はデータの個数が33個だから、 データの小さい 方から17番目の値が第 2 四分位数である。 表から,そのデータは65点以上70点未満の階級にふ くまれるから, 3組の箱ひげ図はウとわかる。 は、 この箱ひげ図から読みとれることについて、 下 しょう。 ぶっと 180cmを基準に考えると、日本代表では、身長 である。また、身長が180cm以上の選手が半 ・日本代表より四分位範囲が小さいチームの チームは、およそ半数の選手の身長が中 考えてみようと 小さいのはC組。 次に,第1四分位数がどの階級にふくまれるかを考える。 『分位数はデータを小さい順に 1組はデータの個数が34個だから、 データの小さいる値を表しています。 データ 方から9番目の値が第1四分位数である。 “の平均値として計算するこ 表から、そのデータは50点以上55点未満の階級にふームの選手の数が23人なの一 くまれるから、 1組の箱ひげ図はイとわかる。 気になっています。 ■は等しい。 2組の箱ひげ図は残ったアである。 得点が70点以下 1組 ① ■25%である。 2組 ア れ身長の低 各チームで、 第1四分位数, ウ G

解決済み 回答数: 1