学年

質問の種類

数学 高校生

高二数学 波線を引いている部分のabはどう計算して3abからabになったんですか?

B1 式と証明・高次方程式 (20点) 多項式P(x)=x+(k-2)x2+(3-2k)x-6 がある。 ただし, kは実数の定数とする。 (1) P(2) の値を求めよ。 また, P (x)を因数分解せよ。 (2) 方程式 P(x)=0 が異なる2つの虚数解をもつときんのとり得る値の範囲を求めよ。 また、このとき、2つの虚数解をα, β とする。 '+B'+2a+2/+3=11 であるとき kの値を求めよ。 配点 (1) 8点 (2) 12点 解答 (1) P(x)=x+(k-2)x2+(3-2k)x-6 P(2)=8+4(k-2)+2(3-2k)-6 = 0 <P(x) に x = 2 を代入する。 よって,P(x)はx-2 を因数にもち, P(x) を x-2で割ると、次のように 因数定理 なる。 x2+kx +3 x-2)x+(k-2)x2+(3-2k)x-6 -2x2 kx²+(3-2k)x P(x)は1次式x-αを因数にも (x-αで割り切れ ⇔P(α)=0 組立除法を用いて計算すると, のようになる。 kx² -2kx 3x-6 3x-6 0 k-2 3-2k -6 2 2k 6 1 k 3 10 したがって P(x)=(x-2)(x2+kx+3) 圈 P(2) = 0,P(x)=(x-2)(x2+kx+3 ) 多項式Aが多項式Bで割り あるとき,商をQ とすると A=BQ 完答への AP(2) の値を求めることができた。 道のり P(2) の値と因数定理から,P(x) が x-2 を因数にもつことに気づくことができた。A © 多項式の除法により, P (x) を因数分解することができた。 (2) (1)より, 方程式 P(x) = 0 は (x-2)(x2+kx+3)=0 すなわち x=2 または 3次方程式 P(x)=0の1 は,kの値に関係なく, x= 残りの解は2次方程式①の解で .....① x+kx+3=0 よって,P(x) = 0 が異なる2つの虚数解をもつ条件は, 2次方程式①が 虚数解をもつことである。 ①の判別式をDとすると D=k-4・1・3 = k²-12 2次方程式 ax2+bx+c=0 の判 別式をDとすると D=b2-4ac 40-

解決済み 回答数: 1
数学 高校生

赤で囲った0って何処の0ですか? 途中式があるなら途中式含めて教えてください。

基本 例題5/ 高次式の値 x=1+√2のとき,次の式の値を求めよ。 P(x)=x^-4x3+2x2+6x-7 93 い 基本8 [① 根号と虚数単位iをなくす ] 指針x=1+√2iをそのまま代入すると,計算が大変である。このようなタイプの問題では,計 算が複雑になる要因を解消する手段 (次の手順①,②) を考える。 x=1+√2iから x-1=√2i この両辺を2乗すると (x-1)=-2 ← -根号とが消える [ ② 求める式の次数を下げる] (x-1)²=-2を整理すると x²-2x+3=0 A24 P(x) すなわち x-4x3+2x2+6x-7をx²-2x+3で割ったときの商 Q(x), 余り R(x) を求めると,次の等式 (恒等式) が導かれる。 P(x)=(x²-2x+3)Q(x)+R(x) Lx=1+√2iのとき,= 0 ! 1次以下 x=1+√2i を代入すると,右辺は 0Q(1+√2i)+R(1+√2i) となり, 1次式の値を求めることになる。 2章 TE 10 次数を下げ る 剰余の定理と因数定理 CHART 高次式の値 次数を下げるあるからQZ 解答 x=1+√2iから x-1=2i 両辺を2乗して (x-1)2-2 整理すると x2-2x+30 ① < x=1+√2iは①の解。 P(x) を x2-2x+3で割ると, 右のようになり 商x²-2x-5 余り 2x+8 1 -2 -5 -231-4 1 -2 である。 よって P(x)=(2-2x+3)(2x-5) x=1+2iのとき、①から P(1+√2i)=0+2(1+√2i) +8=10+2√2 i <検討参照。 別解 ①まで同じ。 ①から x2=2x-3 よって x3=x2.x=(2x-3)x=2x2-3x=2(2x-3)-3x=x-6 x=x3.x=(x-6)x=x2-6x=(2x-3)-6x=-4x-3 ゆえに P(x)=(-4x-3)-4(x-6)+2(2x-3)+6x-7=2x+8 よって P(1+√2i) = 2(1+√2i) +8=10+2√2 i 検討 恒等式は複素数でも成り立つ -2 -1 -2 -5 12 -5 -6 6 5231455 -7 -6 -7 10-15 28

解決済み 回答数: 1