学年

質問の種類

地学 高校生

問2がいまいちよく理解できません。分かりやすく解説していただけるとうれしいです。お願いします

思考 133. 銀河系の構造図は、銀河系の構造を模式的に示したものである。 次の文章を読み、 図を参考にして以下の問いに答えよ。 銀河系のおよそ(ア)個の恒星は,主に 直径2万光年の球状の(イ)と直径約10万 光年の円盤部に分布している。 また, およそ 約200個のウ)星団は、銀河系全体を取 り囲む直径約15万光年の球状の領域である 35. (エ)に分布している。 太陽系は、銀河系の中心から約 2.8万光年 に位置し, 速さ約220km/sで公転している。 このことから, 銀河系の中心の周りを一周す。 20-00xN るのに約(オ億年かかることがわかる。 問1 文章中,図中の空欄 (ア)~(エ)に入る最も適当な語または数値を答えよ。 問2 太陽系が銀河系の中心を中心とする円周上を,一定の速さで運動していると仮定し (オ)を有効数字2桁で求めよ。 ただし, 光の速度=30万km/s,π= 3.14 とし, 途中の計算式も答えよ。 問3 太陽系の年齢を46億歳とし, 太陽系が誕生してから現在までに銀河系の中心の周り を約何周したかを有効数字2桁で求めよ。 ただし, 太陽系の誕生以来,太陽系の軌道 は変化しなかったと仮定する。 途中の計算式も答えよ。 [知識] 星団 円盤部 イ エ 太陽 場合で2.8万光年 |10万光年 15万光年 (09 広島大 改 ) K 13 原 1²

回答募集中 回答数: 0
数学 中学生

34のどちらもの問題が分かりません💦 回答はまだ配布されてないので答えは分かりません💦

3 図のように関数y=x²のグラフ上に2点A,Bがあり 関数y=ax2のグラフ上に2点C, D がある。 点Aの座 標は-2で,点Bの座標は3, AB と CD は平行である。 また,3点O, B, D が同一直線上にあり, OB:BD = 1:2である。 次の問いに答えなさい。 ただし、座標軸の単位の長さは 1cm とする。 (1) 直線 AB の式を求めなさい。 (2) αの値を求めなさい。 (3) △ABCの面積は何cm2 か 求めなさい。 (4) CD がy軸と交わる点をEとする。 このときできる △OED を,y 軸を軸として1回転させてできる立体の体 積は何cm3 か求めなさい。 ただし、円周率は とする。 <規則> 表が出ると, 点Pは軸の正の方向に1移動する。 また, 点 Qはx軸の正の方向に1移動し、さらに,y軸の正の方向に 1 移動する。 裏が出ると, 点Pは軸の正の方向に1移動し,さらに,y 軸の正の方向に1移動する。 また、点Qはx軸の正の方向に 1 移動する。 例えば、図2はコインを2回投げて、 1回目が裏, 2回目が表のとき の点Pの位置を示している。 4 図1のように, 座標平面上の原点に点Pと点がある。 1枚のコイ図1 ンを投げて、次の規則にしたがって, 2点は移動する。 次の問いに答えなさい。 (1) コインを3回投げて、 1回目が表, 2回目が裏 3回目が裏のとき, 移動した点Pの座標を求めなさい。 = (2) コインを4回投げて, 移動した点Pが直線y を求めなさい。 (3) コインを4回投げたとき, △OPQ の面積が4となる表,裏の出方 は何通りあるか, 求めなさい。 A 上にある確率 .... -2 図2 y 5 P 0Q 5 w.... y=x²_y=ax² B 3 P -X 5 5

回答募集中 回答数: 0
数学 中学生

わからないです。①~⑤まで教えてください。 お願いします🙇‍♀️

6 次の問いに答えなさい。 ただし, 円周率はπとし、球は水に沈むものとする。 (1) 先生とあきらさんとゆうりさんは、 容器の中のすき間の体積について考えている。 このとき, ⑨ にあてはまるものをア~ウから1 ⑧にあてはまる数や文字を求めなさい。 また, つ選んで, その符号を書きなさい。 図 1 A 先生: 図1のような, 円すいと球を考えま す。 円すいは, 0を頂点とし、底面 の直径ABの長さは24cmです。 点 C は底面の円の中心です。 また, 母線 OAの長さは20cmです。 この円すい にちょうど入る球が母線 OA とふれ ている点をPとし、この球は底面の円の中心Cにもふれています。 図2は、図1を正面か ら見た図で、円の中心をQとします。 このとき, 容器の中にできるすき間の体積は何cm² か求めてみましょう。 20 24/10 C P 図2 0. P CON あきら : 求めるすき間の体積は、円すいの体積から球の体積をひいた差だから, 円すいの高さや, 球の体積を求める必要があります。 ゆうり: 図2において, AOCは直角三角形だから, 三平方の定理を使って,OC=①cmだ とわかります。 256 あきら:∠OPQ=∠OCA=90℃, ∠QOP=∠AOCだから, △OPQSOCAです。 相似な三角形の NGA 対応する辺の比は等しいから, PQ: CA=0Q: OAとなります。 OQ=OC-CQであるこ とも使うと, PQ=②cmになることがわかります。 Ct2 ゆうり: PQは球の半径なので,球の体積は③cm²となります。 円すいの体積は④cm²となるので、差を計算すると, 容器の中にできるすき間の体積 (5) cm3となります。 90. 201 24

回答募集中 回答数: 0