学年

質問の種類

数学 高校生

極限の問題で初項0の場合を考えていないのですが、なぜ考えなくて良いのか教えて頂きたいです。

練習 次の数列が収束するように,実数xの値の範囲を定めよ。 また, そのときの数列の極限値を求め よ。 ②94 (1) (1) 収束するための条件は -1</1/23x1 x≦1 3 これを解いて 2 2 -x=1 となるのは,x= また,Aで (2) {(x2-4x)"} 3 2 <x≤. よって x2-4x≦1から x2-4x-1≦0 数列の極限値は (2) 収束するための条件は -1<x²-4x≦1 -1<x²-4x から x ²-4x+1>0 x2-4x+1=0の解は x=2±√3 x<2-√3, 2+√3 <x よって 3 3 012/21<x<12/2のとき0.x=12/2のとき A 掛けて -(x2-x+2)<x2+2x-5から ゆえに (2x+3)(x-1)>0 13 x- ...... HINT 数列{rn} の収束 条件は -1<r≦1 また,極限値は 8) mil=>-1<r<15 0₂ のときであるからなら1② x2-4x-1=0の解は x=2±√5 よって 2-√5 ≦x≦2+√5 2 ゆえに,収束するときの実数xの値の範囲は, ① かつ② から 02-√5 ≦x<2-√3, 2+√3<x≦2+√5 (3) {(x²-x+2 また、Aでx2-4x=1 となるのは、x=2±√5のときであるか ら、 数列の極限値は 映画 2-√5<x<2-√3, 2+√3 <x<2+√5のとき0; x=2±√5のとき1 (3) 収束するための条件は-1<x+2 3, 1<x 2' x2+2x-5\" x-x+2=(x-1/12 ) 2+1/17/>0であるから、各辺にポーx+2 を -(x²-x+2)<x²+2x-55x²-x+2+1 mil ( x2+2x-5 ≤1..... (A) x2+2x-5≦x2-x+2から 3x≦7 よってx≦- 7 AT D ←-1<x<1のときと r=1のときで数列{r"} の極限値が異なることに 注意。 (2) TER ae 2-√5 2-√3 x=0の場合 考えなくて♪ 2+√3 2+√5 2x2+x-30 ことになるから,不等号 の向きは変わらない。 MAA ←各辺に正の数を掛ける 4i 練 MJ

回答募集中 回答数: 0
数学 高校生

175.2.3 答えを導くまでの記述に問題はないですよね?

したもの 点のx座 すると、 5 x=-1 gcb gea loga.M+I x=1 から ニ t 基本例題 175 対数の大小比較 | 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, 10g35 点のx座標 ALUMIST 指針 対数の大小比較では, 次の対数関数の性質を利用する。 a>1©¢\0<p<q⇒loga p<loga q 大小一致 0<a<1のとき 0<p<glogp>logag 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し, 底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 係をいた 【CHART 対数の大小 底をそろえて 真数を比較 解答 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 貸付 (3) (3) 4数を正の数と負の数に分けてから比較する。 また, 10g32, 10g52の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (1) 1.5=2=log:3=log:31 ** (31)²-3¹-27>5² また 底3は1より大きく35であるから log332>log3 5 したがって 1.5 >log35 (2) 22102210g222=10g24, log49= 底2は1より大きく, 3 <4<5であるから log23 <1024 <1025 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1 であるから logo.53 <logo.52 < 0 log52= 1 log32= log23 1 <3 < 5 であるから よって すなわち したがって 0 log25 log23² 10222 -=10g23 0<log23<log25 1 1 log25 10g23 練習 2175 (1) 10g23, 10g25 logaq 1 logapty 0 0<log52<log32 logo.53<logo.52 <logs 2 <log:2 で, 底2は1より大きく, S YA a>1 次の各組の数の大小を不等号を用いて表せ。 (2) 10go.33, 10go.35 p 00000 y=logaxのグラフ gx y 0<a<1 10gap OP logag Syz 底はそろえよ <A> 0, B>0ならば A>B⇒A²>B² 底の変換公式。 9 不等号の向きが変わる。 <指針のy=logaxのグラフ から, α>1のとき 0<x<1⇔logax < 0 x>1⇔10gax>0 0<a<1のとき 0<x<1⇔10gax>0 x>1⇔logax < 0 p.293 EX113 (3) logo.54, log24, log34 x 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

不等号の下に=がどういう時に付くのかがよくわかりません

例題129 三角関数 0≦0 <2のとき、次の不等式を解け. (1) 2 sin 02-1 (8 (2) 2 cos > IS 解答 (1) 2sin≧-1 より, sin0= - 考え方 三角関数を含む不等式は,まず「=(イコール)」とおいて,方程式を解くとよい あとは、例題128 (p.253) と同様に考える. ここでは単位円を用いて考えてみる =! よって、 右の図より、 7 11 osos, r≤0<2n <2π 6 (3) tan0≥-√3 5 より、0, (2) 2 cos >√3 h, cos 0>. √√3 cos0= より 2 よって、 右の図より sin 02 11 17/11/1/2π TC 6 6 11 0≤0<n<0<2n 6' л≤0<2n √3 2 11 -π 匹 6'6 7.11 tan0=-√3より.8=12/21. 1/23 5 よって、 右の図より 37 π 2 2' 3 1 2 9 17 15 3 (3) tan O -1 T 11 6 例題129 をグラフで考えると次のようになる. (1) YA (2) YA y=sine /color] 「53 -1 -√3- 1 O .7 6 π 6、 -TC TC y=coso 12 0 ale=0.4 √√3 2 1x 12 上 x AX x **** -√3 「まず 「=」とおいて入 程式を解く. 直線y=-12 より上り 0≦0.2より、2を 含まないことに注意す る. まず「=」とおいて 程式を解く. 0キ 直線x= 11 1/7<0</20 <θ< √3 しない まず「=」とおいて 程式を解く. 傾きが-√3よりも大 きい. (3) YA T 3 三角関数を含む不等式は、 まず 「=(イコール)」 とおいて、方程 式を解くの増加に伴い, sin 0, cos 0, tan 0 の値はどのよう に変化するか単位円を用いて考える Bo 回単 2'2" に注意する. より πであること by=tand F

回答募集中 回答数: 0