学年

質問の種類

歴史 中学生

I can't understand Japanese so please help me

1 右の年表を見て、次の問いに答えなさい。(5点×168(12)は完答) □(1) AとBについて、平将門や藤原純友はそれぞれ一族や家来を 従えて集団をつくっていた武士だった。 この集団を何というか。 □(2) について,後三年合戦が終わった後、 北方との交易などで栄 え、拠点である平泉に中尊寺金色堂を建立した武士の一族を何と いうか。 □ (3) D について,院政を行ったのはどのような存在か,次のア~エ から1つ選びなさい。 イ ア 天皇 せっしょう ウ かんぱく じょうこう 上皇 白 エ寺社 摂政・ せとないかい □ (4) E について,平清盛はある貿易を行うために瀬戸内海の航路や 兵庫の港の整備を行った。 その貿易にあてはまるものを,次のア 〜エから1つ選びなさい。 にちげん ア 日元貿易 にっとう ウ 日貿易 にっそう イ日宋貿易 にちみん I 日明貿易 できごと 年代 935 平将門の乱が起こる(~940) 939 藤原純友の乱が起こる (~941) 1051 前九年合戦が起こる(~1062) 1083 後三年合戦が起こる (~1087) 1086 院政が始まる 1156 ①が起こる しょうえん ア 国ごとに守護を置き, 公領や荘園ごとに地頭を置いた。 イ国や公領ごとに守護を置き, 荘園ごとに地頭を置いた。 ウ国や荘園ごとに守護を置き, 公領ごとに地頭を置いた。 エ公領や荘園ごとに守護を置き, 国ごとに地頭を置いた。 □ (6) G について、 右の資料1は御成敗式目の一部である。 資料 1 □にあてはまる朝廷で使われていた法律を ごせいばいしきもく ちょうてい 資料1の 表す語句を漢字2字で書きなさい。 1159 ②が起こる だいじょう 1167 平清盛が太政大臣になる 1185 源頼朝が守護・地頭を置く 1221 ③ が起こる ほうじょうやすとき 1232 北条泰時が御成敗式目を定める ごけ にん 生活が苦しくなった御家人を助けようとした。 資料2 の法令を何というか。 1274 元寇が起こる (1281) そくい 1318 後醍醐天皇が即位する 1392 南北朝が合一される きんき 1428 近畿地方で一揆が起こる 1467④が起こる (~1477) 1488 北陸地方で一揆が起こる 各地で戦国大名が活躍する かつやく ......... B (7) Hについて,次の ①・②に答えなさい。 げんこう ていく □① 元寇を起こしたのは, モンゴル帝国の第5代皇帝にあたる人物だった。 この人 物はだれか。 かまくら □ ② 元寇の後、鎌倉幕府は右の資料2の法令を出して 資料2 ・E みなもとのよりとも □(5) F について, 源頼朝が守護・地頭を置いた場所について正しく述べているものを,次のア~エから1つ選び なさい。 ・K ・M 女性が養子をとることは, ■では許されてい ないが,頼朝公のとき以来現在に至るまで, 子ども のない女性が土地を養子にゆずりあたえる事例は, 武士の慣習として数え切れない。 御家人以外の武士や庶民が御家人から買った土地に ついては、売買後の年数に関わりなく、返さなければ ならない。 □(8) I について,次ページのア~エはすべて後醍醐天皇に関係することがらである。ア~エを年代順に並べかえな さい。

未解決 回答数: 1
数学 高校生

(3)のn大なりイコール2とありますがこれはなぜですか?

152 00000 重要 例題 95 漸化式と極限(はさみうち) [類 神戸大] 0<a<3, an+1=1+√1+an (n=1,2, 3, ......) によって定められる数列 {an} について,次の (1) (2) (3) を示せ。 (2) 3-an+1<. (1) 0<an<3 ART O SOLUTION 求めにくい極限 CHART はさみうちの原理を利用薫さら 漸化式を変形して, 一般項an をnの式で表すのは難しい。 各小問を次の方針で 考えてみよう。 (1) すべての自然数nについての成立を示すから, 数学的帰納法を利用。 0<a<3 を仮定する。 (2) 漸化式を用いて an+1 を an で表し, (1) の結果を利用する。 (3) (1), (2) で示した不等式を利用し, はさみうちの原理を使って, 数列 {3-an ..... の極限を求める。 ・・・・・!!! はさみうちの原理 すべての自然数nについて ann≦b のとき liman=limbn=α ならば limC=α →∞ 11-00 解答 (1) 0<a<3 ①とする。 [1] n=1のとき, 条件から0<a<3 が成り立つ。 [2] n=kのとき, ① が成り立つと仮定すると 0<a<3 n=k+1 のとき <(3—an) 3-ax+1=3-(1+√1+ax)=2√1+ak ここで, 0<a<3 の仮定から 1 <1+an<4 ゆえに 1 <√1+a2 よって, 2-√1+αk >0 であるから 3-4k+1 0 すなわち k+1 <3 また,漸化式の形から明らかに 0<ak+1 (3) liman=3 ゆえに, 0 <ak+1 <3 となり, n=k+1 のときにも ① は成 り立つ。 [1], [2] から すべての自然数nに対して①が成り立つ。 ■3-an+1=3-(1+√1+an)=2√1+an (2−√1+an)(2+√1+an) _4-(1+an)_²1 2+√1+an 2+√1+an -(3-a) ( 141 基本事項 3 基本88 数学的帰納法で示す。 ◆n=k+1 のときも 0 < ak+1 <3 すなわち 0 < akt かつ ak+1 <3 が成り立つことを示す。 漸化式から。 分子を有理化。 3-An ここで(1)の結 2+√1+a, </ 3-an+1< <1/13(3-4) (2)の結果から、n=2のとき ② ③ から よって ここで, lim a<3-a<3(3-a-1<3) (3-2)+LE? 0<3-a₂ < (3) m (2) (3- 100 < (1) ²(3-as) がって n-1 liman=3 11-00 lim (3-an)=0 121-00 >3であるから (3-as) 72-00 2+√ltan (3-α) = 0 であるから a>b>0のとき 1 1</ -(3-On) 3 (3-0) 3-an-1 小さいから成り立つ</a 仮定すると, liman+1= α であることから, α=1+√1+α が成り立つ。 |これから,α-1=√1+α であり,この式の両辺を2乗して a²-3α=0 整理すると ゆえに,α(α-3)=0,α> 0 から, α=3であると予想でき る。これを.149のズームUPのようにグラフで確認して みると、 右の図のように極限値が3となることが確かめら </1/3 (3-an-²) はさみうちの原理 INFORMATION 複雑な漸化式で定められた数列の極限 /an+1=1+√1+an, 0<a<3 で定義される数列{an} について, lima =α であると 72-00 y 3 y=1+√1+x 21 153 10 a₁ y=x Az az 3 れる。 なお,この無理式で与えられた漸化式から一般項 α を求め, 直接 lima =3である ことを示すことは難しいので, lim (3-α)=0を示そうとして (2) の誘導の不等式が 与えられているのである。 2240 4章 10 数列の極限 PRACTICE・・・ 95 ④ u=a (0<a<1), an+1=-120'12/24%(n=1,2,3,..) によって定められる数 列{an} について,次の (1), (2) を示せ。 また, (3) を求めよ。 (1) 0<an<1 (2) r=a2のとき 1-ty≦r (1-an) (n=1, 2, 3, ......) と演習) [鳥取大) ヨチャート の紹介 本質を 全に定 に問 関大 参考書 題学信

回答募集中 回答数: 0
数学 高校生

数3です。 この式変形を教えてください。

192 重要 例題 113 漸化式と極限 (5) ・・・ はさみうちの原理 数列{an}が0<a<3, an+1=1+√1+an (n=1,2, 3, ・・・・・・) を満たすとき (2)3-an+1< 1/12 (3-an)を証明せよ。 3 (1) 0<a<3 を証明せよ。 (3) 数列{an} の極限値を求めよ。 指針 (1) すべての自然数nについての成立を示す→ 数学的帰納法の利用。 (2) (1) の結果,すなわち an> 0, 3-an> 0 であることを利用。 (3) 漸化式を変形して, 一般項an をnの式で表すのは難しい。 そこで, (2)で示した不等 ! 式を利用し, はさみうちの原理を使って数列 {3-an} の極限を求める。 はさみうちの原理 すべてのnについて n≦an≦gn のとき limp=limgn=α ならば n-00 7140 なお、次ページの補足事項も参照。 CHART 求めにくい極限 不等式利用で はさみうち 解答 (1) 0<an<3 ① とする。 [1] n=1のとき, 与えられた条件から①は成り立つ。 [2] n=kのとき, ① が成り立つと仮定すると 0<a<3 n=k+1のときを考えると, 0<a<3であるから ak+1=1+√1+an>2> 0 練習 ③ 113 .….... ak+1=1+√1+an <1+√1+3=3 したがって 0<ak+1 <3 よって,n=k+1のときにも ①は成り立つ。 [1], [2] から,すべての自然数nについて ①は成り立つ。 3-An -(3-an) (2) 3-an+1=2-√1+an 2+√1+an (3)(1),(2) から 0<3-an S したがって liml 2 (13) (34)=0であるから 11-00 lim(3-an)=0 1400 liman=3 n-1 ≤ (1) ² (3-a₁) 3 n-00 LE a=2, n≧2のとき an liman = a n→∞ 3 2 [類 神戸 p.174 基本事項 3 基本 105 van-1 1 数学的帰納法による。 ◄0<a₁<3 KOM 0<a から √1+an>1 an<3から √1+ak <2 <3-α>0であり、a>0か ら 2+√1+an>3 n≧2のとき, (2) から 3-an< (3-an-1) <(1) ²(3-an-2)..... n-1 · < (-/-) "¹¹ (3-as) 3 を満たす数列{an}について

回答募集中 回答数: 0