学年

質問の種類

数学 中学生

二次関数の最大値について 二次関数の最大値とは、私の中の認識ではyの値の最大値でしたが、添付画像の問題のような「x=○、y=△のとき最大値が□」というように答えのyの値と最大値が違うことがあるので混乱しています。 私の認識から間違っているかもしれません。詳しく解説お願い... 続きを読む

解説 追加費用 スマートフォンな の例題解説動画 入の方は追加費 ※解説動画は、書 の2次元コードか 青チャー 日常学習 ( 入試対策 選び抜かれ あり、効率よ 種々の解説 150 基本 例題 89 2変数関数の (1) 2x+y=3のとき,2x'+y2の最小値を求めよ。 (2)x0,y, 2x+y=8 のとき, xyの最大値と最小値を求めよ。 指針 (1)の2x+y=3, (2) の2x+y=8のような問題の前提となる式を条件式と 条件式がある問題では,文字を消去する方針で進めるとよい。 (1) 条件式2x+y=3から y=-2x+3 これを2x2+yに代入する 2x2+(-2x+3)"となり, yが消えて 1変数 xの2次式になる。 →基本形α(x-p)+αに直す方針で解決! (2)条件式からy=-2x+8として」を消去する。 ただし、次の点に要注意 消去する文字の条件 (y≧0) を,残る文字(x) の条件におき換え CHART 条件式 文字を減らす方針で (1) 2x+y=3から 解答 y=-2x+3 ...... ① 2x2+y2に代入して, y を消去すると 2x2+y2=2x2+(-2x+3)2 =6x2-12x+9 =6(x²-2x)+9 学の知識 ■考える力 例題ページ( 針をどのよ 問題の解き 法にたどり えることで, したがって (2) 2x+y=8から y≧0であるから =6(x²-2x+12)6・12+9 =6(x-1)'+3 よって, x=1で最小値3をとる。 このとき, ①から y=-2・1+3=1 x=1, y=1のとき最小値3 y=-2x+8 -2x+8≧0 ...... ① 変域に注意 Myを消去 として、を 分数が出てく 入後の計算 000+x 重要 (1)x, (2)x, t=6(x-1 は下に凸で 実数全体 解 (x,y)=(1 に表すことも ゆえに x≤4 .... ② なお, 指針 タブ どこでも ⑤ エスビューア 書をタブレット いつでも、ど デジタルなら x≧0との共通範囲は 0≤x≤4 また xy=x(-2x+8)=-2x+8x 銀三 =-2(x2-4x) =-2(x2-4x+22 +2・22 =-2(x-2)2+8 ② の範囲において, xyはx=2で最大値8をとり x = 0, 4で最小値0 をとる。 ①から x=2のとき y=4, x=0のとき y=8, x=4のとき y=0 ゆ よって (x,y)=(2,4)のとき最大値8 xy=t とおいた 0t=-2(x-2+ のグラフ ta 最大 148F 最小 01 (x,y)=(0,8), (40) のとき最小値 0 練習 (1) 3x-y=2のとき,2x2-y2の最大値を求めよ。 ③ 89 (2)x0,y≧0, x+2y=1のとき, x2+y2の最大値と最小値を

解決済み 回答数: 2
数学 高校生

複素数の問題です。 POINT CHECKとPRACTICEの大門1について、 どちらも同じ「複素数の範囲で因数分解をしなさい」と言われていて、前者の答えは()の中の分数を無くすようにしているのに対して、後者は()に分数があるまま答えを出しています。 何が違うのでしょう... 続きを読む

第2章 複素数と方程式 1 複素数と2次方程式 23 解と係数の関係 (2) 数Ⅱ [学習日 P64 POINT CHECK ①の類題 実数の範囲で因数分解する。 2次方程式 4.12x+7=0を解くと, ・特に指定がない場合は, 有理数の範囲で因数分解する。 つまり、 2次式はつねに1次式の積に因数分解できる。 (ただし, 複素数の範囲) 学習の目標 2次方程式の解を利用して因数分解しましょう。 STUDY GUIDE 愛念の全合 2次式の因数分解 2次方程式 ax+bx+c=0の2つの解をα, B とおくと, 次の関係がある。 公式の因数分解 ax'+bx+c=a(α)(B) 計算における注意 因数分解のときに,g を忘れないこと。 α. β は,解の公式から必ず求められる。 要点をまとめましょう。 662-4.7 I= 4 68 4 3±√2 2 一複素数 実数 [ 有理数!!!!無理数 よって, 例題 次の2次式を複素数の範囲で因数分解しなさい。 x²-4x+1 解の公式から解を求める 2次方程式 4x+1=0を解くと. x=2±√2"-1=2±√3 よって, 4r+1={z(2+√3)} {ェー(2-√3)} =(x-2-√3)(x-2+√3) 実数の範囲での因数分解 POINT CHECK ◆次の2次式を複素数の範囲で因数分解しなさい。 ①の類題 4ー12c+7 x²-6x+14 2次方程式6z+14=0を解くと. =3±√32-14=3±√-5=3±√5i よって、 = 6z+14= {z(3+√5)}{ェー(3−√5) (3-5) (3+√5i) 42-12F+7=(3+/2)(x-3) 2 =(2x-3-√2) (2-3+√2 ) ②の類題 複素数の範囲で因数分解する。 2次方程式 92+6x+2=0を解くと, I= -3±√32-9.2 9 -3±√-9 複素数の範囲での因数分解 9 -3±√9i 要点の確認をしましょう 9 -1±i 品の類題 9z+6z+2 = 3 (2x-3-√2) (2x-3+√2) -64- PRACTICE 1 次の2次式を複素数の範囲で因数分解しなさい。 10 L100 (1) 3-7x+3 よって, 9x²+6x+2=9(x−−1 + 1)(x-1-1) 3 =(3+1-i)(3c+1+i) (3x+1-i)(3x+1+i) P65 PRACTICE 1 2次方程式の解を求めて, 因数分解する。 (1) 2次方程式32-7x+3=0を解くと, 7±√13 I= 6 数Ⅱ 練習問題を解いてみましょう L103 (2) 2-3x+5 3c-7s+3=3(x_7+/13)(x_7-/13) 6 6 (2) 2次方程式 2-3x+5=0を解くと, 3(x-7+√13)(x-7-√13) 6 6 3+√11 (x-3)(x-3) 2 次の式を ①有理数 ② 実数 ③複素数の各範囲で因数分解しなさい。 3±√11i 2 3+5=(x-3)(x-3) 2 2(1) -32-10=(x2+2) (2-5) ① =(x2+2)(x+√5)(x-√5) →②

解決済み 回答数: 1