学年

質問の種類

情報:IT 高校生

答え合わせをしたいので、解説と回答をお願いしたいです!

5 以下の文章を読み, 空所 33 40 に入れるのに最も適当なもの を後の解答群から一つずつ選び, 対応した解答欄にマークしなさい。 なお, は、2度目以降は 33 や 33 や 34 など同じ内容を含む空所が複数回現れるときに 34 などのように細字で表記する。 図1のように, 1から13までの番号が書かれた13枚のカードがある。 これらの カードからランダムに2枚のカードを選ぶとき, 選ばれた2枚のカードに書かれた 番号が連続した数値となる確率を計算するプログラムについて考える。 1から13までの番号が書かれたカード 1 2 34 5 6 17 8 9 |10|11 12 13 カードに書かれた番号が連続した数値となる2枚の例 3 4 7 78 |12|13| 図1 これらの13枚のカードから任意の2枚を選ぶときの組み合わせの総数を x, カードに書かれた番号が連続した数値となる2枚を選ぶときの組み合わせの総数を yとする。 また, 選ばれた2枚のカードに書かれた番号をi,j (i < j) とする。 (1)xとyから確率を求める計算式はp= 33 [ 33 の解答群] ① x+y ⑤y+x x-y (6 y-x ⑦yxx (2) i,jが連続した数値となる条件は [ 34 の解答群] となる。 xxy x÷y yix 34 である。 ① j+i=1 ② j + i = -1 ③ j-i=1 ④ j-i= -1 - 8

回答募集中 回答数: 0
数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0
理科 中学生

この問題の(4)と(6)がわかりません。 解説見てもわからなくて、、、 お願いします!

ド おもり J 図4 [糸I は, 水平である。〕 図5 〔糸Iは、水平である。 [] おもりJの重さは 1 N である。 糸Iが結び目を引く力の大きさを、図4図5で比べる ア 図4が大きい イ図5が大きい 力の大きさを 図4と図5で比べると, ア 図4が大きい ウ同じである。 糸I と糸 G が結び目を引く力の イ 図5が大きいウ 同じである ③ 11 ばねに分銅をつるし、分銅の質量とばねの長さとの関係を調べる実験をした。 以下の問いに答えなさい。ただ ばね自身やつないでいる糸の質量は無視できるものとする。また、ばね A~Iはすべて同じものを用いるものと 【実験1】 図1のように分銅をばねにつるしていき、ばねの長さと分銅の質量は表1のようになった。 表 1 図 1 ばねの長さ [cm] 12 14 16 分銅の質量[g] 20 40 60 問1 実験1においてばねの長さと分銅の質量の関係をグラフにしなさい。 問2 実験1において分銅の質量をx, ばねの長さを!とする。 このときの分 銅の質量æとばねの長さの関係を,xとy を用いた式で表しなさい。 問3 実験1に用いたばねに, 90gの分銅をつるしたときのばねの伸びを答えなさい。 【実験2】 ばね A~F を使い、 図2のように, 50gの分銅をつるした。 分銅 図2 000000000000 50 g ばねB 00000000 ば E 7600 ねじ ☐ 50 g 50 g ばねの長さ ばねF 20 20 の [cm] 104 0 00000000000000000000000 0 20 分銅の 50 g

回答募集中 回答数: 0
数学 中学生

至急です! 解き方が分からないので教えて欲しいです!

4 右の図のように、底面に垂直な2つの仕切りで区切ら れた高さ42cmの直方体の水そうが,水平に置かれている。 水そうの左側から順に底面 A, 底面 B, 底面 C とする。 その底面A上には12cmの高さまで水が入っている。 この 水そうにα管,6管から同時に水を入れはじめる。 底面A, Bを分ける仕切りの高さは24cm, 底面 B, C を分ける仕 切りの高さは36cmであり, 底面 A, 底面 B, 底面Cの面 積は,それぞれ 600 cmである。 a, b 管を同時に開き, α 管からは底面A側に毎分900 cm, 6管からは底面 C側に 毎分 540 cmの割合で水を入れる。 水そうに水を入れはじ めてからx分後の底面A上の水面の高さをycmとする。 900g 高さ36cmの仕切り b 高さ24cmの仕切り 6月 底面A 底面B底面C 次の問いに答えなさい。 ただし, 水そうや仕切りの厚さは考えないものとする。 (1)水そうが満水になるのは、水を入れはじめてから何分何秒後かを求めなさい。 (2) 底面C上の水面の高さが36cmになるのは水そうに水を入れはじめてから何分後かを求めなさい。 (3)xとyとの関係を表すグラフをかきなさい。 (0≦x≦40) (4)xとyとの関係を式で表しなさい。 (24≦x≦40) (5) 底面B上にも水が入り、底面B上の水面の高さが底面C上の水面の高さと最初に等しくなるのは, 水そうに水を入れはじめてから何分後かを求めなさい。 (6) 高さ24cmの仕切りを取り外し、 水そうを空の状態にして, まずはα管のみを開いて水を入れ める。 その後, b管も開いて水を入れると, 仕切りの両側で水面の高さが等しくなり,そのときの水 面の高さは,水そうの高さのちょうど半分であった。 このとき, 6管を開いたのは α 管を開いてから 何分何秒後であったかを求めなさい。

回答募集中 回答数: 0
数学 中学生

(3)Bさんの式をグラフに表すとどうなりますか?

一次関数と方程式 (福岡) 東西に一直線にのびたジョギングコース上に, P地 2400% 点と, P地点から東に540m離れたQ地点と, Q地点 から東に1860m離れたR地点とがある。 Aさんは, このジョギングコースを通ってP地点とR地点の間を 1往復した。 Aさんは, P地点からQ地点まで一定の速さで9分 間歩き, Q地点で立ち止まってストレッチをした後, R地点に向かって分速 150mで走った。 Aさんは,P 地点を出発してから28分後にR地点に着き、 すぐに P地点に向かって分速150mで走ったところ, P地点 を出発してから44分後に再びP地点に着いた。 Q 540円 0 9 28 44 図は,AさんがP地点を出発してからx分後にP地点からym離れていると するとき, P地点を出発してから再びP地点に着くまでのxとyの関係をグラ フに表したものである。 次の問いに最も簡単な数で答えよ。 (1) AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何m か求めよ。 (1) 分速 60 m 540mの距離を9分で歩いているから, 540÷9=60(m/分) 1860~150mmで走った時間 (2) 15 分 36 秒後 (2) AさんがQ地点からR地点に向かって走り始めたのは, P地点を出発してか ら何分何秒後か求めよ。 (3) 1800 m 1860 78 3 28- 3 -=150(分) 3 1分=60秒x=36秒 じゃん = 150 5 (3) Bさんは, AさんがP地点を出発した後しばらくして, R地点を出発し,こ のジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。 Bさんは, P地点に向かう途中で, R 地点に向かって走っているAさんとす れちがい,AさんがP地点を出発してから39分後に, P地点に向かって走っ ているAさんに追いつかれた。 AさんとBさんがすれちがった地点は, P地点から何m離れているか求め よ。 BさんがAさんに追いつかれた地点=Aさんが出発してから39 分後 にいる地点→44分後にP地点に着いたから、 P地点から5(分)×150(m/分)=750 (m)の地点。 BさんがR地点からP地点に向かうときの式は,y=-70x+αで, 750=-70×39+aa=3480より,y=-70x+3480X AさんがQ地点からR地点に向かうときの式は,y=150x+bで, 2400=150×28+b b = -1800 より,y=150x-1800 2人がすれちがったのは, -70x+3480=150x-1800 これを解いて, x=24より, Aさんが出発してから24分後。 (2) Q地点からR地点まで 走った時間は1860 150 =12.4(分)=12分24秒。 この時間を到着した28分 後から引く。 (3) Aさんが出発してから 24分後の位置は, 150×24-1800=1800(m) より, P地点から1800m の地点。

回答募集中 回答数: 0
数学 中学生

(5)の(ア)と(イ)の解説お願いします!!

4 右の図のように, 東西にの 太郎さん 花子さん びるまっすぐな道路上に 地点Pと地点Qがある。 太郎さんは地点Qに向 かって,この道路の地点Pよ り西を秒速3mで走っていた。 西 -東 花子さんは地点Pに止まっていたが, 太郎さんが地点Pに到着する直前に,この道路を 地点Qに向かって自転車で出発した。 花子さんは地点Pを出発してから8秒間はしだいに 速さを増していき、 その後は一定の速さで走行し, 地点P を出発してから12秒後に地点Q に到着した。 花子さんが地点P を出発してからx秒間に進む距離をym とすると, xとyと の関係は下の表のようになり, 0≦x≦8の範囲ではxとy との関係は y=ax2 で表され るという。 x (F) 0 ア 8 10 *** 12 y (m) 0 4 16 24 イ 次の(1)~(5)の問いに答えなさい。 (1) a の値を求めなさい。 (2) 表中のア, イにあてはまる数を求めなさい。 (3) xの変域を 8 ≦x≦12 とするとき と との関係を式で表しなさい。 (4)xyとの関係を表すグラフをかきなさい (0≦x≦12) (5) 花子さんは地点P を出発してから2秒後に, 太郎さんに追いつかれた。 (ア) 花子さんが地点Pを出発したとき, 花子さんと太郎さんの距離は何m であったかを 求めなさい。 (イ) 花子さんは太郎さんに追いつかれ, 一度は追い越されたが,その後, 太郎さんに追い ついた。 花子さんが太郎さんに追いついたのは, 花子さんが地点Pを出発してから何 秒後であったかを求めなさい。

回答募集中 回答数: 0
数学 中学生

この問題の解説お願いします!!! 答えも載せておきます!!

4 右の図のように,水平に置かれた直方体状 の容器があり、その中には水をさえぎるため に、底面と垂直な長方形のしきりがある。 し きりで分けられた底面のうち、頂点Qを含 む底面をA, 頂点R を含む底面をBとし, Bの面積はAの面積の2倍である。 管aを 開くと, A側から水が入り、 管bを開く と, B側から水が入る。 aとbの1分間あた りの給水量は同じで、一定である。 40cm a 5 130cm A B R A側の水面の高さは辺QPで測る。 いま, aとbを同時に開くと, 10分後にA側の水面 の高さが30cmになり, 20分後に容器が満水になった。 管を開いてからx分後のA側の水 面の高さをycm とすると, xとyとの関係は下の表のようになった。 ただし, しきりの厚 さは考えないものとする。 (分) 0 6 ... 10 15 *** 20 y (cm) 0 ... ア 30 イ ... 40 次の(1)~(4)の問いに答えなさい。 (1)表中のアイに当てはまる数を求めなさい。 (2)xと」との関係を表すグラフをかきなさい。 (0≦x≦20) (3)xの変域を次の(ア), (イ)とするとき,x と y との関係を式で表しなさい。 (ア) 010 のとき (イ) 15≦x≦20 のとき (4)B側の水面の高さは辺RSで測る。 管を開いてから容器が満水になるまでの間で, A側 の水面の高さとB側の水面の高さの差が2cmになるときが2回あった。管を開いてから 何分何秒後であったかを, それぞれ求めなさい。

回答募集中 回答数: 0