学年

質問の種類

数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1
英語 中学生

どうやって覚えたらいいですか。

3年生ま ※1・2年生で登場したはページをイタリ ※1・2年生ですでに学んでいて、3年生では登場しない! 過去分詞形 cutting 33 Stand 過去形 cut hitting teach 現在形 10 QUEER ☐ tell stand(s) cut hit hurting 21 A-A-A THE PRI ☐ チェックページ cut(s) hit hurt letting 50 think teach(es) cut 59 hit(s) hurt let putting 34 think(s) hit hurt(s) let put 85 reading win D hurt let(s) put read D ②② let put(s) setting A-B-C read set D 8 put read(s) set チェックページ ☐ 23 read set(s) D 2 set □ D コ 16 come 7 63 run A-B-A チェックページ 23 become become(s) became come(s) run/s) 原形 現在形 過去形 過去分詞形 came ran become come 現在分詞形 becoming 11 原形 ☐ be 31 現在形 ☐ coming running 36 begin am/is/are understand tell(s) 過去形 stood told thought understand(s) understood win(s) won 過去分詞形 stood taught told thought standing understood teaching telling taught 現在分詞形 won thinking 過去形 understan winning bear ☐ run ☐ 736 begin(s) break bear(s) was/were began 過去分詞形 been 900 choose break(s) bore begun being 現在分詞形 ☐ do 31 choose(s) broke bom begin 過去分詞形 ☐ 過去形 B-B型 ページ 30 63 bring 現在形 原形 bought bought buying 27 buy's) buy bring(s) brought brought bringing ☐ 178 draw do(es) chose broken bear drink draw(s) did chosen brec building ☐ eat drink(s) drew done cho build(s) built built 51 build catch(es) caught caught catching ☐ 57 digging ☐ ②② catch dug dig(s) dug feeling ☐ felt ② dig feel(s) felt ¥2 feel 4 fight fight(s) fought fought fighting ☐ 5247 12 fall eat(s) drank drawn do fly fall(s) ate drunk dr ② forget fly/flies fell eaten d get forget(s) flew fallen find find(s) found found finding ☐ give get(s) forgot flown had having ☐ 75 have have/has had hear hear(s) heard heard hearing ☐ hold hold(s) held held holding ☐ 4334 go give(s) got forgotten go(es) gave gotten/got given grow went hide grow(s) gone grew keep keep(s) kept kept keeping know hide(s) grown hid ☐ eave leave(s) left left leaving 12 ride know(s) hidden knew ☐ se lose(s) lost lost losing ake make(s) made made making an mean(s) meant meant meaning et meet(s) met met meeting d rebuild(s) rebuilt rebuilt rebuilding say(s) said said saying sell(s) sold sold selling send(s) sent sent sending sit(s) sat sat sitting sleep(s) slept slept sleeping spend(s) spent spent spending 0000000000 10 52 602223 ride(s) known see rode see(s) ridden show saw sing show(s) showed seen shown 29 sing(s) speak sang Sung 2 steal speak(s) spoke spoker 37 swim steal(s) stole stolen swim(s) Swam SWUm 4 take take(s) took taken ①②1 throw throw(s) threw throw 2 wake wake(s) woke wok 49 wear wear(s) wore WO 10 write write(s) wrote WT

解決済み 回答数: 1
数学 高校生

(2)の解き方が分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

基本 例題 15 塗り分け問題 (1) 赤、青、黄、白の4色の絵の具で塗り分けるとき 右の図で, A, B, C, D の境目がはっきりするように, すべての部分の色が異なる場合は何通りあるか。 (4) 同じ色を2回使ってもよいが、隣り合う部分は異な 色とする場合は何通りあるか。 CHART & SOLUTION 00000 A C D B 塗り分け問題 特別な領域 (多くの領域と隣り合う, 同色可) に着目 (2)最も多くの領域と隣り合うCに着目し, C→A→B→Dの順に塗っていくことを考える。 (1) A, B, C, D の文字を1列に並べる順列の数と同じ。 答 (1) 塗り分け方の数は, 異なる4個のものを1列に並べる方 法の数に等しいから 4!=24 (通り) (2) C→A→B→Dの順に塗る。 C,A,Bは異なる色で塗るから, C→A→Bの塗り方は 4P3=24 (通り) DはCとしか隣り合わないから, C→A→B→D 4 × 3 × 2 × 3 Cの色以外の3通りの塗り方がある。パー! よって, 塗り分ける方法は全部で 24×3=72 (通り) a- Cの色を除く 2 CとAの色を除く 3 Cの色を除く ← A B C D に異なる4色を 並べる方法の数に等しい。 A, B, D の3つ Cは, の領域と隣り合う。 A とBは、2つの領域, D は1つの領域と隣り合 う。 INFORMATION (2)の別解 塗り分けに使えるのは4色。 Cは3つの領域と隣り合うから 4色と3色で塗り分け る2通りについて考えてみよう。 [1] 4色の場合 (1) から 4!=24 (通り) 2] 3色の組合せは,どの1色を除くかを考えて 4通り その3色の組に対して, C→A→Bの塗り方は 3!=6(通り) SE DはCと異なる色の2通りで塗り分けられる。 よって、3色の塗り分け方は [2]から 24140 4×6×2=48 (通り)

解決済み 回答数: 1
数学 高校生

なぜ目の和が3以上18以下だとわかるのですか? 教えてほしいです🙇‍♀️

大小2個のさいころを投げ なる場合 同じ大きさで区別のできない3個のさいころを投げて、目の和が 通りあるか。 数になる場合は何通りあるか。 CHART & SOLUTION 同時に起こらない場合の数 和の法則 基本 (1) 目の和が5または6になる場合は起こり方に重複はない。 和の法則を使う。 (2) 目の和が7の倍数になるのは目の和が7, 14の2通り。 (1) と同様に, 和の法則が る。 目の和が7のとき, 6の目を含むと残りの目が2つとも1でも和が7 から、6の目は含まれない。 あらかじめ6を除いて考え, 効率よく数える。 解答 (1) 大,小さいころの目の数を,それぞれx, yとし,出る 目を (x, y) で表す。 [1] x+y=5 のとき (x,y)=(1,4), (2,3),(3,2),(4, 1) [2] x+y=6 のとき (x,y)=(1,5) (2,4) (3,3) (4,2) (5,1) よって, 和の法則により 4+5=9(通り) (2)目の和は3以上18以下であるから,目の和が7の倍数 になるのは 7, 14の2通りである。 3つのさいころの目を{□□□} で表す。 [1] 目の和が7のとき {1, 1,5}, {1, 2, 4}, {1, 3, 3}, {2,2,3} [2] 目の和が14のとき {2,6,6}, {3, 5, 6}, {4, 4, 6}, {4,5,5} よって, 和の法則により 4+4=8(通り) INFORMATION さいころの目の区別 大 1 1 234 12 2 3 34 4 5 160/6 56 345 4 15/6/7 7 189 6 67 5 67 8 9100 6 789 10 [1] の場合 ・ [2] の場合 区別できないさい であるから、例え {1, 1,5}と{5, は同じ場合と考 「大小2個のさいころ」とは, 「2個のさいころを区別して考えよ」 ということ 例えば,(x,y)=(1,4) と (x,y)=(4, 1) は異なる目の出方を表す。 一方、 のできない2個のさいころ」 のときは (1,4) と (41) は同じ目の出方と考 この目の出方を集合で {1, 4}と表し, 順序を考慮した (14) と区別する。 ACTION

解決済み 回答数: 1
数学 高校生

この問題の8C7は分かるけど、8C8の意味がよく分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

げた こと ると → 仮 さい 実験 補充 例題 157 反復試行の確率と仮説検定 00006 箱の中に白玉と黒玉が入っている。 ただし, 各色の玉は何個入っているかわ からないものとする。 箱から玉を1個取り出して色を調べてからもとに戻す ことを8回繰り返したところ,7回白玉が出た。 箱の中の白玉は黒玉より多 いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし て考察せよ。 CHART & SOLUTION 「箱の中の白玉は黒玉より多い」 という主張に対して,次の仮説を立てる 基本 155 61 仮説 白玉と黒玉は同じ個数である そして、仮説, すなわち, 箱から白玉を取り出す確率がであるという仮定のもとで7回 1 2 以上白玉を取り出す確率を求める。なお、箱から玉を取り出してもとに戻すことを8回繰 り返すから, 反復試行の確率 (数学A) の考え方を用いて確率を求める。 反復試行の確率 1回の試行で事象Aの起こる確率をとする。この試行をn回行う反復試行で,A がちょうど回起こる確率は nCrp (1-p) ただし = 0, 1, ......,n なお, Cr は異なるn個のものから異なる個を取り出して作る組合せの総数である。 5章 答 19 箱の中の白玉は黒玉より多い [1][ の主張が正しいかどうかを判断するために,次の仮説を立て 果の る。 仮説 箱の中の白玉と黒玉は同じ個数である [2] [2] の仮説のもとで,箱から玉を1個取り出してもとに戻す ことを8回繰り返すとき, 7回以上白玉を取り出す確率は C(1/2)^(1/2)+.C.(1/2)^(1/2)-12/(1+8)=2536 9 = 0.035······ ◆黒玉を取り出す確率は これは 0.05 より小さいから, [2] の仮説は誤りであると考え られ, [1] は正しいと判断できる。 1-12-12 である。 00 仮説検定の考え方 したがって, 箱の中の白玉は黒玉より多いと判断してよい。 inf条件が 「8回繰り返したところ, 6回白玉が出た」 であるなら, 6回以上白玉を取り出す確率は C(1/2)^(1/2)+C(1/2)^(1/2)+nCd(1/2)^(1/2)2-12/21 (1+8+ (1+8+28)= -=0.144...... 37 256 これは 0.05 より大きいから, 白玉は黒玉より多いと判断できない。 [2] の仮説は棄却されない。 なお、白玉を取り出す回数をXとすると, [1] の主張が正しい, つまり、白玉は黒玉より多いと 判断できるための範囲は、例題の結果と合わせて考えると,X≧7 である。 PRACTICE 157° AとBがあるゲームを10回行ったところ,Aが7回勝った。この結果から,AはB より強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし

解決済み 回答数: 1
英語 高校生

受動態の問題です。合っているか確認お願いします。書いていないところは教えてください

REVIEW 下の日本語を参考に、( )に適当な1語を入れなさい. ● )( These cakes (Neve) (made )( by Julia. "Apples" { are ) ( coallech ) "ringo" in Japanese. • Monkeys( ● )( )( ) around here. The sandwiches (have) alt ( been ) (sold ). ⑱The concert ( 61 ( )( )( ) ( ) by the staff then. ) ( 〉 by a foreigner at the airport. ) many people in )( )( ● The advertising display( Osaka. ●She ( was ) ( satisfied() ( with the result. ) 6 It is ) (said) that she is a famous singer in Hong Kong. ●これらのケーキはジュリアによって作られた。 e "apples" は日本語で「りんご」と呼ばれています。 この辺りではサルが見られます。 ● サンドイッチはすべて売れてしまいました。 <be+過去分詞 動作主はby 〜で表す〉 <SVOCの受動態 be + 過去分詞 +C> <助動詞を含む受動態 助動詞+be+過去分詞> 〈完了形の受動態 have [has/had] + been + 過去分詞> <進行形の受動態 be + being+過去分詞) ⑥ コンサートはそのときスタッフによって準備されているところだった。 私は空港で外国人に話しかけられた. その広告は大阪では多くの人々に知られている。 彼女はその結果に満足した。 彼女は香港で有名な歌手だそうだ。 <句動詞の受動態> <by 以外の前置詞を伴う受動態> <日本語では能動的に表される受動態> <They say that … の受動態> (1) (2) に

解決済み 回答数: 1
数学 高校生

数Ⅱ黄チャート基本例題85、PR85で質問です どちらも3点を通る円の方程式を求めよという問題なのですが、基本例題とPRで解き方が違うので、使い分けがあるのかを知りたいです。 また、授業では基本例題の解き方しかやっていないので、PRの解き方も解説してほしいです。 長くなりま... 続きを読む

0 本 例題 85 円の方程式の決定 (2) 00000 3点A(3,1),B(6, 8), C(-2,-4) を通る円の方程式を求めよ。 p.138 基本事項 1 141 CHART & SOLUTION 3点を通る円の方程式 一般形 x2+y2+x+my+n=0 を利用 ① 一般形の円の方程式に, 与えられた3点の座標を代入 2 1,m,nの連立3元1次方程式を解く。 基本形を利用しても求められるが, 連立方程式が煩雑になる。 垂直二等分線の利用 3 求める円の中心は, ABC の外心であるから, 線分AC, BC それぞれの垂直二等分線の 交点の座標を求めてもよい。 12 解 求める円の方程式を x2+y2+lx+my+n=0 とする。 点A(3, 1) を通るから ←一般形が有効。 32+1+37+m+n=0 点B(6, -8) を通るから 62+(-8)2+61-8m+n=0 点C(-2, -4) を通るから (-2)^(-4)2-21-4m+n=0 整理すると 31+m+n+10=0 61-8m+n+100=0 2 円と直線,2つの円 21+4m-n-200 これを解いて l=-6,m=8, n=0 (第1式)+(第3式)から 1+m-2=0 (第2式) + (第3式) から 21-m+20=0 よって 3/+18=0 など。 よって, 求める円の方程式は x2+y^2-6x+8y=0 [別解 △ABCの外心Dが求める円 の中心である。 yA A /② 0 x 線分 AC の垂直二等分線の方程式は 中心D C 3 =-x- 線分ACの すなわち y=-x-1・・・・・・ ① 線分 BC の垂直二等分線の方程式は B 傾き1 y+6=2(x-2) すなわち y=2x-10 ② ①,②を連立して解くと x=3,y=-4 線分 BC の 中点 (2, -6), よって, 中心の座標はD(3,-4), 傾き - 12 半径は AD=1-(-4)=5 ゆえに求める円の方程式は (x-3)2+(y+4)²=25 RACTICE 85Ⓡ ② 3点 (4-1) (6, 3), (-3, 0) を通る円の方程式を求めよ。

解決済み 回答数: 1
数学 高校生

数2の直線の方程式です。 y=ax+bの式に代入して連立方程式にしても解けると思うんですが、なんでこんな公式があるんですか?!

122 基本 例題 70 直線の方程式 次の2点を通る直線の方程式を求めよ。 (1) (3,-2), (4, 1) (3) (-2, 3), (-2,-5) CHART & SOLUTION 00000 (2) (4, 0), (0, 3) (4) (-3, 2), (1, 2) p.120 基本事項 異なる2点(x1, 1), (X2, yz) を通る直線の方程式 [1] X1 X2 のとき [2] x1=x2 のとき x=x1 [解 Ante 合 (1) y-(-2)=1-(-2) 2(x1) x2-x1 交 4-3 (x-3) / (1) すなわち y+2=3(x-3) よって y=3x-11 3 1 310 (2) y-0-3-0 (x-4) 0 4 x Ea 3 よって y=-2x+3 (3) x座標がともに-2であるから x=-2 (4) y座標がともに2であるから y=2 Stixol YA [int 公式 [1] yy=12-11(x-x) の X2-X1 両辺に X2-x1 を掛けて (y2-y₁)(x-x1) -(x-x1)(y-1)=0 x= x2 とすると (y2-y₁)(x-x1)=0 yyであるから x=x (公式 [2]) (3)3 (4) 2 -2 ! よって, * は公式 [1] [2] -3 0 1 x をまとめたものである。 (p.120 基本事項 1③) -5 POINT a≠0, b=0 のとき, 2点 (α, 0), (0, 6) を通る直線 lの方程式は b-0 y-0= (xa) すなわち + 1/2=1 0-a a b ya このとき, αを直線lのx切片, bを直線lの切片という。 (2) は,これを公式として用いてもよい。 0 a b 全で ための PRACTICE 70° 次の直線の方程式を求めよ。 (1) 点 (35) 通り,傾きが√3 (3)2点 (5,1) (3,2)を通る (5)2点(-3,1) (-3, -3) を通る Ja,0)s(s) (2)2点 (5-3), (-7, 3) を通る (4) 切片が4, y切片が2z (6)2点 (1-2) (-5-2) を通る x

解決済み 回答数: 1